Latency in the Cloud – How Low Can We Go?

By Tiffany Trader

June 26, 2012

At the HPC Advisory Council European Conference 2012 in Hamburg, in conjunction with the International Supercomputing Conference (ISC’12), Josh Simons, Office of the CTO, VMware, delivered a presentation (video/slides) that should be of particular interest to followers of the HPC cloud space. The session, titled “Achieving ultra-low latency in the Cloud: How low can we go?” tackled the million-dollar HPC cloud question: Are cloud computing and virtualization only useful for running throughput workloads or can latency-sensitive applications be run as well?

Josh SimonsIn a blog post penned prior to the event, Simons writes, “This is the question we have been examining within the Office of the CTO at VMware. In this talk, I will present our early results using InfiniBand RDMA in a vSphere virtual environment and discuss the prospects for future performance improvements and functional enhancements.”

Even though Simons works for a virtualization company, he does so as an HPC advocate. His 20-year industry background includes tenures at Sun Microsystems and Thinking Machines. Simons kicks off his talk by explaining that he is there “to present some preliminary data about what we can use cloud computing technology for – things other than throughput, embarrassingly-parallel applications, which at this point have been shown pretty definitively [to] run pretty well in a cloud environment.”

In traditional HPC, performance is god. Coding is done as close to the metal as possible, which is why cloud with all its abstractions was met, at first anyway, with some disdain by serious HPCers. At one extreme, you had big-iron, custom-built, painstakingly-tuned systems and on the other end, a volume-based generic computing utility – these were different religions. Still, it was apparent from the start that the embarrassingly-parallel applications (aka data-parallel workloads) were a good fit for cloud. And before cloud was called cloud, HPC was already moving away from big iron, toward commodity scale-out cluster architectures. I would venture to say that cloud is a natural extension of the scale-out cluster architecture, taking the imperative to scale-out a step further.

At any rate, abstracting complexity comes at a cost, and for cloud, it’s the network-dependent apps that get dinged. Which brings us back to the ultimate HPC cloud question: How can we move the needle from embarrassingly-parallel toward more communication-dependent apps? The answer, according to Simons, lies in enhanced interconnect and virtualization technologies, which are the kinds of projects that the VMware rep and his peers are working on.

In his talk, Simons compares the needs of general enterprise IT and HPC, pointing to a “convergence” between the camps, driven by increasingly shared concerns, such as:

  • Scale-out management.
  • Multi-tenancy and security.
  • Low latency communication.
  • High utilization.
  • Power management.
  • Dynamic workloads.
  • Application parallelism and resiliency.

Because the enterprise IT space is so much larger than HPC (approximately $800 billion-a-year versus $25 billion-a-year), the fact that these are shared concerns is a “good thing” for the smaller player. As just one example of this symbiosis, the ubiquity of multicore processors in the enterprise space is driving the push toward application parallelism.

800 lb gorillaAccording to the analyst group Forrester, the cloud market will be worth $241 billion by 2020 – but what type of cloud will this be? “It’s whatever the 800 lb gorilla wants it to be,” emphasizes Simons, referring to the mammoth $800 billion general IT space. “Enterprise IT is going to drive the requirements of what cloud looks like,” notes Simons, explaining further that this is what motivated him to join VMware: to help shape a cloud future that is HPC-friendly.

Simons believes that “the bulk of the [HPC] market can ultimately be served by these sorts of [cloudy] technologies.”

“What you’ll see is mainstream cloud and virtualization technologies being more and more applicable starting at the bottom of the [HPC] market and moving up over time,” he contends.

While virtualization gets you into a cloud environment, it can benefit HPC in other ways as well, notes Simons, citing several use cases:

  • Heterogenous environments – the ability to customize the environment with any software stack you want to run.
  • Dynamic resource management – including live migration.
  • Workload isolation – for secure multitenancy and failure protection.
  • Dynamic fault tolerance – checkpointing.
  • For current virtualization users – unification of IT infrastructure.

For the heart of his discussion, Simons details the preliminary results of a tech report that VMware published in April, called RDMA Performance in Virtual Machines using QDR InfiniBand VMware VSphere 5. This point-to-point test used two two-socket Westmere-class systems with Mellanox QDR InfiniBand adapters, running Red Hat 6.1 with OFED 1.5.3. Results labeled as “ESXi” used vSphere 5.0, while results labeled as “ESXi ExpA” and “ESXi ExpB” included unreleased patches that will be included in a future vSphere release.

In the paper, the authors write that the remote direct memory access (RDMA) performance experiments “demonstrate that latencies under 2μs and bandwidths of 26Gb/s can be achieved using guest-level RDMA with passthrough mode on VMware’s ESXi hypervisor.”

Simons explains that using an RDMA software stack and an RDMA-capable piece of hardware allows users to step around the kernel on the data-pass, enabling very low latencies. The experiment compares an actual bare metal setup with a virtualized setup that uses a direct analog of the kernal bypass (represented in the figure below by the RDMA box on the right-hand side of the right-hand image).

VMware slide
Click to enlarge.

Looking at InfiniBand bandwidth with VM DirectPath I/O, there were no showstoppers. The results were deemed good, which was expected. The experimenters were much more interested in latency results. They looked at latency with VM DirectPath I/O with RDMA read using polling for completions (see chart below). The blue line (the bottom line) is native: 2.28 microseconds. The red line, above that, is virtual: 2.98 microseconds. This 0.7 overhead is not bad from an absolute perspective, notes Simons, but from a relative percentage perspective, “it’s pretty bad,” he says, adding that of course it always depends on the application. The send/receive test had an overhead of about .4 microseconds, a bit better.

VMware slide
Click to enlarge.

Simons relates that they are pleased with these results as a starting point, and they are confident they can improve on them over time.

“We can look at mircro-benchmarks all day, but what really matters is how this performs on real benchmarks,” he says. To that end, Simons reminds us to take a look at the HPC Advisory Council website, which includes “a whole bunch of really useful use cases and analyses that were done looking at different HPC ISV applications and [provide] a detailed analysis of what their messaging requirements are, what their interconnect requirements are, etc.”

At the end of his talk, Simons includes the following helpful references:

RDMA Performance in Virtual Machines with QDR InfiniBand on vSphere 5

Best Practices for Performance Tuning of Latency-Sensitive Workloads in vSphere VMs

VMware HPC Blog

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This