The Uber-Cloud Experiment

By Wolfgang Gentzsch and Burak Yenier

June 28, 2012

Delivering high performance computing as a service comes with a set of challenges, both technical and social. In this article, Wolfgang Gentzsch and Burak Yenier discuss the various aspects of the service model, the people that need to be involved in the process, and the challenges faced when executing workloads on remote HPC resources. They will also describe an open HPC-as-a-Service experiment that they have come up with to bring together industry end users, resource providers, software providers, and HPC experts. 

The technology components of HPC-as-a-Service that enable multi-tenant, remote access to centralized resources, and metered use are not unfamiliar to this community. However, as service-based delivery models take off, with its promise of easy access to pay-per-use computing, our users have been mostly on the fence, observing and discussing the potential hurdles to its adoption in HPC.

Even with the challenges of data privacy, incompatible software licensing models, and a dozen other potential roadblocks, it’s time we dip our toes in the water and figure out how to achieve the benefits of service-based delivery. How far are we from an ideal HPC-as-a-Service model? At this point, nobody knows.

What is fairly certain is that we now have the technology ingredients to make it happen. To glue it together into a coherent end-to-end process, the authors have come up with the “Uber-Cloud Experiment.” We will perform this experiment manually  — that is, not via an actual automated cloud service — because we believe the technology is not the challenge anymore; rather it’s the people.

To start, let’s define what roles each stakeholder has to play to make service-based HPC come together. In this case, stakeholders consist of industrial end users, resource providers, software providers, and high performance computing experts.

The industry end users: A typical example is a small or medium size manufacturer in the process of designing and prototyping its next product. These users are candidates for HPC-as-a-Service when in-house computation on workstations has become too lengthy a process, but acquiring additional computing power in the form of HPC is too cumbersome or is not in line with budgets. HPC is not likely to be the core expertise of this group.

The resource providers: This pertains to anyone who owns HPC resources, computers, and storage, and is networked to the outside world. A classic HPC center would fall into this category, as well as a standard datacenter used to handle batch jobs, or a cluster-owning commercial entity that is willing to offer up cycles to run non-competitive workloads during periods of low CPU-utilization.

The application software provider: This includes software owners of all stripes, including ISVs, public domain organizations and individual developers. We are looking for rock-solid software, which has the potential to be used on a wider scale. For the purpose of this experiment, on-demand license usage will be tracked in order to determine the feasibility of using the service model as a revenue stream.

The HPC experts: This group includes individuals or companies with HPC expertise, especially in areas like cluster management. It also encompasses PhD-level domain specialists with in-depth application knowledge. In the experiment, experts will work with end users, computer centers, and software providers to help glue the pieces together.

For example, suppose the user is in need of additional compute resources to speed up a product design cycle, say for simulating more sophisticated geometry or physics, or for running many more simulations for a higher quality result. That suggests a specific software stack, domain expertise, and even hardware configuration. The general idea is to look at the end user’s task and select the appropriate resources, software and expertise that match its requirements.

Then, with modest guidance, the user, resource providers, and HPC experts will implement and run the task and deliver the results. The hardware and software providers will measure resource usage; the HPC expert will summarize the steps of analysis and implementation; the end user will evaluate the quality of the process and of the results and the degree of user-friendliness this process provided. We, as the experiment orchestrators, will analyze the feedback received. Finally, the team will get together, extract lessons learned, and present further recommendations as input for the corresponding case study.

The downside for active participants? It will require some time and effort, but there’s no monetary cost. The potential payoff is that participants will get to work with an expert team, hopefully gain some insight into a new service paradigm, and find out if this is an appropriate model for their particular business or application.

The experiment is scheduled to begin later in July and run for three months. At that point, the results will be made publicly available to the HPC community. Anyone interested in participating can register at www.hpcexperiment.com.

—–

The experiment managers: Wolfgang Gentzsch and Burak Yenier. Wolfgang is an HPC veteran. Having worked in leading positions in research, academia, and industry for some 30 years, Wolfgang is now an HPC consultant and the Chairman of the ISC Cloud conference series for HPC and Big Data in the Cloud. Burak is the Vice President of Operations at CashEdge, a software-as-a-service company in Silicon Valley, which provides innovative payments and aggregation solutions to financial institutions.

The observer and reporter: Tom Tabor is the CEO of Tabor Communications Inc. (TCI) running HPCwire, HPC in the Cloud, Datanami and the Digital Manufacturing Report. TCI publications will follow the experiment and will post status reports; provide high-level analyses of the process and interviews with active participants, and broadcast webinars.

The sponsors: Sponsors of this experiment are all those of you who commit to support the industry end user, compute resource providers, software vendors and organizations, and HPC experts and organizations. A great example is the Digital Science Center at the Indiana University, led by Geoffrey Fox. The center joins the experiment with its compute and storage resources and with its HPC expertise.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

New Algorithm Overcomes Hurdle in Fusion Energy Simulation

January 15, 2022

The exascale era has brought with it a bevy of fusion energy simulation projects, aiming to stabilize the notoriously delicate—and so far, unmastered—clean energy source that would transform the world virtually overn Read more…

Summit Powers Novel Protein Function Prediction Work

January 13, 2022

There are hundreds of millions of sequenced proteins and counting—but only 170,000 have had their structures solved by researchers, bottlenecking our understanding of proteins and their functions across organisms’ ge Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to efforts to improve the underlying ‘noisy’ hardware, there's be Read more…

AWS Solution Channel

shutterstock 377963800

New – Amazon EC2 Hpc6a Instance Optimized for High Performance Computing

High Performance Computing (HPC) allows scientists and engineers to solve complex, compute-intensive problems such as computational fluid dynamics (CFD), weather forecasting, and genomics. Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

Edge to Exascale: A Trend to Watch in 2022

January 5, 2022

Edge computing is an approach in which the data is processed and analyzed at the point of origin – the place where the data is generated. This is done to make data more accessible to end-point devices, or users, and to reduce the response time for data requests. HPC-class computing and networking technologies are critical to many edge use cases, and the intersection of HPC and ‘edge’ promises to be a hot topic in 2022. Read more…

Citing ‘Shortfalls,’ NOAA Targets Hundred-Fold HPC Increase Over Next Decade

January 5, 2022

From upgrading the Global Forecast System (GFS) to acquiring new supercomputers, the National Oceanic and Atmospheric Administration (NOAA) has been making big moves in the HPC sphere over the last few years—but now it’s setting the bar even higher. In a new report, NOAA’s Science Advisory Board (SAB) highlighted... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire