Using In-Memory Data Grids for Global Data Integration

By Nicole Hemsoth

July 2, 2012

by Dr. William Bain, ScaleOut Software, Inc.

Introduction

By enabling extremely fast and scalable data access even under large and growing workloads, in-memory data grids (IMDGs) have proven their value in storing fast-changing application data. For example, Web server farms use IMDGs to hold and share large volumes of shopping carts under heavy Web loads. Applications in financial services use IMDGs to hold fast-changing stock trading data for processing orders or for quickly analyzing and responding to emerging market trends.

ScaleOut In Memory Servers

An increasing number of companies employ multiple data centers to distribute their workloads and mitigate the impact of catastrophic events such as earthquakes and floods. IMDGs can be used to complement disaster recovery strategies by continuously replicating changes to fast-changing grid-based data to remote sites. This enables fast recovery and resumption of processing without data loss after a disaster strikes.

The use of in-memory data grids has also created the opportunity for organizations to employ even more powerful global strategies for data sharing. As organizations work to efficiently access fast-changing data across multiple sites or scale their processing into the cloud, the need to quickly and seamlessly migrate data on demand has grown rapidly. For example, organizations that produce and store fast-changing data in multiple data centers need to be able to access and analyze data without regard to where it originates. Likewise, organizations that access the highly elastic resources of public clouds need an efficient way to restage data in the cloud for processing.

Because IMDGs are specifically designed to store fast-changing data, federating IMDGs across multiple sites and enabling seamless access to data among all federated sites provide an ideal solution to the challenge of global data access. The benefits are twofold. First, applications can efficiently access and update data simply by using the IMDG’s data access mechanisms without modification; the federated IMDGs handle all of the details of remote data access and coherent updating. Second, IMDGs provide the scalability and low latency required to enable applications to handle large workloads with fast responsiveness.

We describe the combined scenarios for data replication and sharing as global data integration. This article outlines how in-memory data grids easily can be deployed to implement key strategies for global data integration, and it describes the important benefits this technology brings to organizations with global reach.

Disaster Recovery

A solid disaster recovery strategy requires that if one data center goes offline, its workload can be handled by another healthy data center to avoid service interruptions. For this recovery strategy to be effective, changes to fast-changing application data must be continuously replicated to a remote site so that the site is immediately ready to handle the workload. An IMDG that includes site-to-site data replication to one or more IMDGs at remote sites can provide this important capability and thereby complement the data center’s other replication and recovery strategies. In addition, all data centers can be operated in a “live-live” configuration under normal operating conditions to make full use of all computing resources and avoid the need for an idle “stand-by” data center.

ScaleOut Disaster Recovery
 

Carefully integrating data replication technology into an IMDG’s software architecture enables it to deliver the performance and reliability needed to handle large, fast-changing workloads. It also enables this capability to be easily deployed and managed by IT administrators. ScaleOut GeoServer® DR from ScaleOut Software is an example of a technology that provides these capabilities.  Because it is designed to extend the scalable, highly available architecture of its underlying IMDG, ScaleOut StateServer® (SOSS), it automatically scales replication bandwidth as grid servers are added to handle growing workloads, and it automatically tolerates server failures without interrupting operations. Additionally, it provides management tools that allow IT staff to easily establish and monitor connections to remote sites.

Global Data Access

Beyond data replication for disaster recovery, global data integration provides a range of choices for federating data stored in IMDGs at multiple data centers and cloud sites. For example, multiple data centers can be integrated into a single virtual data grid to provide seamless access to data, regardless of where it is stored and where the access request originates. Also, multiple grids can be interconnected to provide automatic data migration and elastic scaling when needed.

ScaleOut Global Data Access To ensure that global data access can easily be integrated into applications, IMDGs can seamlessly incorporate global access into their data access mechanisms. This simplifies application design by making remote data access transparent and automatic. It also eliminates the need for applications to track where data is located and manually restage it for local access. As an example, ScaleOut GeoServer follows this approach by extending the APIs provided by ScaleOut StateServer to transparently access data on demand at a configured set of remote sites; all grid accesses proceed as if data were located in the application’s local IMDG. ScaleOut GeoServer automatically searches remote IMDGs for missing data and copies it into the local IMDG as needed.

“Mostly Read” Access

ScaleOut GeoServer gives applications fine-grained control over data sharing to ensure efficient use of wide area networks (WANs) and to support various usage models. In one important use case, described as “mostly read” access, applications primarily need to access certain remote data but not perform updates on that data. This type of remotely accessed data is typically static or slowly changing so that local copies only need infrequent refresh over the WAN. Examples could include product pricing information for Web sites or portfolio holdings in financial services.

ScaleOut GeoServer implements mostly-read access by creating a local copy of remotely accessed data and allowing the application to specify a policy for refreshing it. The use of a local copy keeps local reads fast and minimizes WAN usage. Individual data objects can be marked by the application either to be updated periodically or to be updated when a change occurs at the remote site. Called coherency policies, these rules allow applications to tailor WAN usage to the characteristics of the data being remotely accessed.

An example of mostly read access, consider a wealth management application that needs to update its portfolios with periodic price changes; prices for different investments are held in multiple data grids around the world. The application can use global data access to obtain and efficiently track prices, with updates flowing into its local IMDG at the frequency required by the application. Also, to minimize WAN usage, only the prices of investments specifically needed by the application are retrieved over the WAN.

ScaleOut Mostly Read Access 

“Read/Write” Access

In a second important use case called “read/write” access, remotely accessed data needs to be accessed and then updated, and updates by different sites need to be carefully synchronized.  Examples include shopping carts in a Web site or financial portfolios being managed (not just examined) at remote sites. These data types can be fast-changing, and it is imperative to synchronize updates to avoid corrupting vital application data.

To synchronize updates, data must migrate from site to site on demand and avoid the use of local copies which could become out of date. ScaleOut GeoServer implements data migration and read/write access by transparently incorporating it into the IMDG’s existing distributed locking mechanism, which has been extended to span multiple sites. The IMDG automatically migrates ownership of data from a remote site when it is locked for reading by the application. This ensures that updates are always performed locally and at exactly one site at a time. The application does not have to manually restage data across sites nor provide its own mechanism for global data synchronization.

As an example, consider a premise-hosted ecommerce Web farm that needs to scale into the cloud to handle high seasonal demand. To accomplish this, the Web site’s administrator reconfigures the IP load-balancer to distribute Web requests across both on-premise and cloud-based Web servers; this procedure is sometimes called “cloud bursting.” By using an IMDG capable of global data integration, all Web servers transparently and coherently retrieve and update shopping carts within a single, virtualized IMDG spanning both sites. The following diagram illustrates this scenario using ScaleOut StateServer (“SOSS”) IMDGs at both sites and ScaleOut GeoServer to provide automatic data migration.

ScaleOut Read/Write Access 

Combining Data Replication and Global Data Access

It is often useful to combine the capabilities described above for global data integration to simultaneously address multiple requirements. For example, two central data centers which hold data accessed by satellite data centers can use data replication for disaster recovery purposes. Both could handle live traffic as described above, but in the case of a data center failure all traffic is routed to the healthy data center. Applications running in satellite data centers can use global data access to retrieve and/or update data held in the two central data centers. These applications can access data from either data center and transparently receive it even if one of the central data centers goes down. As illustrated in the following diagram, this configuration demonstrates the power and flexibility of global data integration.

ScaleOut Benefits of a Virtual Data Grid 

Benefits of a Virtual Data Grid

As we have seen, the goals of global data integration are to replicate data for disaster recovery and to enable applications to transparently access data across multiple sites as needed. ScaleOut GeoServer’s implementation of global data integration accomplishes these goals by creating a virtual data grid that seamlessly federates in-memory data grids across multiple sites. This enables application developers to write programs which access all shared data from a single (local) IMDG, leaving the IMDG to implement the details of remote access and synchronization. After a minimal amount of configuration to connect to remote sites, changes to add or remove grid servers in any data center do not affect configuration of the virtual data grid. The virtual data grid is able to withstand and recover from WAN interruptions and other failure conditions without affecting applications.

This article has illustrated the power of global data integration to extend the reach of applications that manage data spanning multiple data centers. As we have seen, in-memory data grids (IMDGs) provide a fast, scalable storage repository for application data. Their mechanisms can be transparently extended to enable data replication for disaster recovery and global access to data held at remote sites. These capabilities open up important new scenarios for globally distributed applications and simplify their implementation. Now applications can seamlessly access data worldwide and extend their processing into the cloud to handle peak workloads. Managing geographically distributed data has never been easier.

 

Dr. William L. Bain is founder and CEO of ScaleOut Software, Inc. Bill has a Ph.D. in electrical engineering/parallel computing from Rice University, and he has worked at Bell Labs research, Intel, and Microsoft. Bill founded and ran three start-up companies prior to joining Microsoft. In the most recent company (Valence Research), he developed a distributed Web load-balancing software solution that was acquired by Microsoft and is now called Network Load Balanc­ing within the Windows Server operating system. Dr. Bain holds several patents in computer architecture and distributed computing. As a member of the Seattle-based Alliance of Angels, Dr. Bain is actively involved in entrepreneurship and the angel community.

www.scaleoutsoftware.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora sys Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over t Read more…

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains – including and in particular the semiconductor supply chain. In the U.S. – which, like much of the world, relies on Asia for its semiconductors – those efforts have taken shape through the recently... Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

AWS Solution Channel

Shutterstock 1519171757

Running large-scale CFD fire simulations on AWS for Amazon.com

This post was contributed by Matt Broadfoot, Senior Fire Strategy Manager at Amazon Design and Construction, and Antonio Cennamo ProServe Customer Practice Manager, Colin Bridger Principal HPC GTM Specialist, Grigorios Pikoulas ProServe Strategic Program Leader, Neil Ashton Principal, Computational Engineering Product Strategy, Roberto Medar, ProServe HPC Consultant, Taiwo Abioye ProServe Security Consultant, Talib Mahouari ProServe Engagement Manager at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1689646429

Gain a Competitive Edge using Cloud-Based, GPU-Accelerated AI KYC Recommender Systems

Financial services organizations face increased competition for customers from technologies such as FinTechs, mobile banking applications, and online payment systems. To meet this challenge, it is important for organizations to have a deep understanding of their customers. Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear we Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

CXL Brings Datacenter-sized Computing with 3.0 Standard, Thinks Ahead to 4.0

August 2, 2022

A new version of a standard backed by major cloud providers and chip companies could change the way some of the world's largest datacenters and fastest supercomputers are built. The CXL Consortium on Tuesday announced a new specification called CXL 3.0 – also known as Compute Express Link 3.0... Read more…

Inside an Ambitious Play to Shake Up HPC and the Texas Grid

August 2, 2022

With HPC demand ballooning and Moore’s law slowing down, modern supercomputers often undergo exhaustive efficiency efforts aimed at ameliorating exorbitant energy bills and correspondingly large carbon footprints. Others, meanwhile, are asking: is min-maxing the best option, or are there easier paths to reducing the bills and emissions of... Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire