NERSC Signs Up for Multi-Petaflop “Cascade” Supercomputer

By Michael Feldman

July 3, 2012

The US Department of Energy’s National Energy Research Scientific Computing Center (NERSC) has ordered a two-petaflop “Cascade” supercomputer, Cray’s next-generation HPC platform. The DOE is shelling out $40 million dollars for the system, including about 6.5 petabytes of the company’s Sonexion storage. The contract covers both hardware and services, which will extend over multiple years. Installation is scheduled for sometime in 2013.

The NERSC acquisition represents Cray’s third publicly announced pre-sale of a Cascade system and the first in the US. The other two deals in the pipeline include a multi-petaflop machine destined for HLRS, at the University of Stuttgart, and a 400-teraflop one for Kyoto University.

Cascade is a big step for Cray. Not only does it represent the company’s first foray in Intel-based supercomputing, but it also fills out Cray’s Adaptive Supercomputing vision to a much greater degree than the previous XT and XE product lines. DARPA, which poured hundreds of millions of dollars into the design via the agency’s High Productivity Computing Systems (HPCS) program, helped to make Cascade a much bigger deal than just a platform refresh.

For example, a good portion of the funding went into developing more sophisticated compilers, tools and libraries, including the creation of the Chapel language, all aimed at making the platform more productive and easier to use. The extra money also allowed Cray the breathing room for a critical system redesign, in particular, the opportunity to ditch its AMD Opteron-only architecture.

Although much of the talk surrounding Cascade has been about putting Intel silicon into Cray hardware, the platform is actually designed to support multiple processor types. According to Cray CEO Peter Ungaro, they’ll be able to build blades with AMD processors, as they do now, as well as those with accelerators, like GPUs and Intel MIC (Xeon Phi) coprocessors, and even blades with future ARM chips, if they so desire. “It’s really going to open up our options to have targeted nodes for targeted workloads,” he told HPCwire.

The key is the new Aries interconnect, which is integrated with PCI Express (PCIe), a standard on-board bus that virtually all server processors will support. Prior to this, Cray’s interconnect technology (SeaStar, then Gemini) was tied to HyperTransport, which restricted the company’s supercomputers to AMD CPUs. With the faster speeds of PCIe 3.0, and its ubiquity, the bus technology is now in a position to serve as the underlying substrate for system networks, even for custom interconnects.

All of this potential heterogeneity is likely to be bypassed by NERSC though, at least initially. At a time when many other national labs are opting for GPUs on their fastest machines, NERSC-7 will be based entirely on Intel Xeon CPUs. No GPU or Intel MIC parts are to be used, although future upgrades with those accelerators are theoretically possible. According to Jeff Broughton, who heads NERSC’s Systems Department, the deployment will be based on “the latest generation of Intel processors available at the time of installation.” Given the 2013 timeframe, those chips could very well be Ivy Bridge CPUs rather than the Sandy Bridge parts in the field today.

By going with the more traditional CPU-only platform for NERSC’s first multi-petaflop super, the DOE lab has bucked a trend begun by other national labs like Oak Ridge, NCSA, and TACC , which are using GPUs or, in the case of TACC, Intel MIC accelerators, to get into the double-digit petaflop realm. NERSC-7 was also originally supposed to be a 10-petaflop machine, but getting there via x86 CPUs (that is, not with an IBM Blue Gene or Fujitsu K-type architecture) is not really economically feasible right now without accelerator add-ons.

According to NERSC director Kathy Yelick, the lab supports 4,500 users running hundreds of different codes, across many science disciplines and there is concern about forcing all that software to be rewritten for PCIe-based GPUs or Intel MIC devices. “Current accelerators have a separate memory space and are configured as coprocessors rather than first-class cores, both features that we are hoping will change,” she explained. “So while we are encouraging users to experiment with low-power processor technology, such as GPUs, in our testbeds, we do not think the time is right to transition all of the users.”

They do expect to move their users to some type of low-power manycore architecture over the next several years, but would like to make this transition just once. The first opportunity is likely to present itself with NERSC-8, the next major system procurement following NERSC-7. By the time that system is deployed a few years down the road, the system planners are probably thinking (or at least hoping) there will be a range of integrated low-power manycore architectures to choose from.

That’s a reasonable bet. Certainly, by the middle of the decade, we should at least see the appearance of NVIDIA’s ARM64-GPU “Maxwell” processor, an AMD server-class APU, and an Intel MIC chip integrated with some big Xeon CPU cores.

In the meantime, it should be relatively straightforward to run current user codes on NERSC-7 hardware since the lab’s existing petascale machine, Hopper, is a Cray XE6 system, and from an application point of view, will be nearly indistinguishable from its successor. Getting those codes to scale up to a machine with about twice the performance of Hopper could be somewhat of a challenge, but NERSC sees many potential candidates, both for simulation (LQCD, fusion, turbulence, astrophysics, chemistry, quantum Monte Carlo, molecular dynamics and cloud resolving climate models) and data analysis (bioinformatics and material screening). Of course, few if any applications are expected to use all two petaflops, but these big machines also function quite nicely as capacity clusters.

NERSC is likely to be only one of a number of US national labs signing up for Cascade supercomputers over the next few years. Given DARPA’s DoD pedigree, we should expect, at the very least, to see some defense labs acquire these next-generation Cray machines as they upgrade their HPC machinery.

Cascade will also be an opportunity for Cray to re-establish its dominance at the top of the supercomputing heap in the face of renewed competition from IBM. In the world’s top 100 systems, Blue Gene supercomputers are now the most numerous single platform, outdistancing Cray XT/XE installations by a 21 to 17 margin. That was the result of the recent surge of Blue Gene/Q deployments over the last six months, which was able to capture a lot of new business as it squared off against the now two-year-old Cray XE6.

Cray is certainly expecting great things from Cascade. Over the past eight years, the company has managed to steadily expand sales of its x86 supercomputing portfolio. Starting with its Red Storm supercomputer in 2004, which led to the company’s first commercial x86-based product, XT3, and then to subsequent platforms, XT4, XT5, XT6 and XE6/XK6, Cray has sold more cabinets with each successive generation. “If we keep that trend going,” says Ungaro, “we’ll be in good shape.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This