NERSC Signs Up for Multi-Petaflop “Cascade” Supercomputer

By Michael Feldman

July 3, 2012

The US Department of Energy’s National Energy Research Scientific Computing Center (NERSC) has ordered a two-petaflop “Cascade” supercomputer, Cray’s next-generation HPC platform. The DOE is shelling out $40 million dollars for the system, including about 6.5 petabytes of the company’s Sonexion storage. The contract covers both hardware and services, which will extend over multiple years. Installation is scheduled for sometime in 2013.

The NERSC acquisition represents Cray’s third publicly announced pre-sale of a Cascade system and the first in the US. The other two deals in the pipeline include a multi-petaflop machine destined for HLRS, at the University of Stuttgart, and a 400-teraflop one for Kyoto University.

Cascade is a big step for Cray. Not only does it represent the company’s first foray in Intel-based supercomputing, but it also fills out Cray’s Adaptive Supercomputing vision to a much greater degree than the previous XT and XE product lines. DARPA, which poured hundreds of millions of dollars into the design via the agency’s High Productivity Computing Systems (HPCS) program, helped to make Cascade a much bigger deal than just a platform refresh.

For example, a good portion of the funding went into developing more sophisticated compilers, tools and libraries, including the creation of the Chapel language, all aimed at making the platform more productive and easier to use. The extra money also allowed Cray the breathing room for a critical system redesign, in particular, the opportunity to ditch its AMD Opteron-only architecture.

Although much of the talk surrounding Cascade has been about putting Intel silicon into Cray hardware, the platform is actually designed to support multiple processor types. According to Cray CEO Peter Ungaro, they’ll be able to build blades with AMD processors, as they do now, as well as those with accelerators, like GPUs and Intel MIC (Xeon Phi) coprocessors, and even blades with future ARM chips, if they so desire. “It’s really going to open up our options to have targeted nodes for targeted workloads,” he told HPCwire.

The key is the new Aries interconnect, which is integrated with PCI Express (PCIe), a standard on-board bus that virtually all server processors will support. Prior to this, Cray’s interconnect technology (SeaStar, then Gemini) was tied to HyperTransport, which restricted the company’s supercomputers to AMD CPUs. With the faster speeds of PCIe 3.0, and its ubiquity, the bus technology is now in a position to serve as the underlying substrate for system networks, even for custom interconnects.

All of this potential heterogeneity is likely to be bypassed by NERSC though, at least initially. At a time when many other national labs are opting for GPUs on their fastest machines, NERSC-7 will be based entirely on Intel Xeon CPUs. No GPU or Intel MIC parts are to be used, although future upgrades with those accelerators are theoretically possible. According to Jeff Broughton, who heads NERSC’s Systems Department, the deployment will be based on “the latest generation of Intel processors available at the time of installation.” Given the 2013 timeframe, those chips could very well be Ivy Bridge CPUs rather than the Sandy Bridge parts in the field today.

By going with the more traditional CPU-only platform for NERSC’s first multi-petaflop super, the DOE lab has bucked a trend begun by other national labs like Oak Ridge, NCSA, and TACC , which are using GPUs or, in the case of TACC, Intel MIC accelerators, to get into the double-digit petaflop realm. NERSC-7 was also originally supposed to be a 10-petaflop machine, but getting there via x86 CPUs (that is, not with an IBM Blue Gene or Fujitsu K-type architecture) is not really economically feasible right now without accelerator add-ons.

According to NERSC director Kathy Yelick, the lab supports 4,500 users running hundreds of different codes, across many science disciplines and there is concern about forcing all that software to be rewritten for PCIe-based GPUs or Intel MIC devices. “Current accelerators have a separate memory space and are configured as coprocessors rather than first-class cores, both features that we are hoping will change,” she explained. “So while we are encouraging users to experiment with low-power processor technology, such as GPUs, in our testbeds, we do not think the time is right to transition all of the users.”

They do expect to move their users to some type of low-power manycore architecture over the next several years, but would like to make this transition just once. The first opportunity is likely to present itself with NERSC-8, the next major system procurement following NERSC-7. By the time that system is deployed a few years down the road, the system planners are probably thinking (or at least hoping) there will be a range of integrated low-power manycore architectures to choose from.

That’s a reasonable bet. Certainly, by the middle of the decade, we should at least see the appearance of NVIDIA’s ARM64-GPU “Maxwell” processor, an AMD server-class APU, and an Intel MIC chip integrated with some big Xeon CPU cores.

In the meantime, it should be relatively straightforward to run current user codes on NERSC-7 hardware since the lab’s existing petascale machine, Hopper, is a Cray XE6 system, and from an application point of view, will be nearly indistinguishable from its successor. Getting those codes to scale up to a machine with about twice the performance of Hopper could be somewhat of a challenge, but NERSC sees many potential candidates, both for simulation (LQCD, fusion, turbulence, astrophysics, chemistry, quantum Monte Carlo, molecular dynamics and cloud resolving climate models) and data analysis (bioinformatics and material screening). Of course, few if any applications are expected to use all two petaflops, but these big machines also function quite nicely as capacity clusters.

NERSC is likely to be only one of a number of US national labs signing up for Cascade supercomputers over the next few years. Given DARPA’s DoD pedigree, we should expect, at the very least, to see some defense labs acquire these next-generation Cray machines as they upgrade their HPC machinery.

Cascade will also be an opportunity for Cray to re-establish its dominance at the top of the supercomputing heap in the face of renewed competition from IBM. In the world’s top 100 systems, Blue Gene supercomputers are now the most numerous single platform, outdistancing Cray XT/XE installations by a 21 to 17 margin. That was the result of the recent surge of Blue Gene/Q deployments over the last six months, which was able to capture a lot of new business as it squared off against the now two-year-old Cray XE6.

Cray is certainly expecting great things from Cascade. Over the past eight years, the company has managed to steadily expand sales of its x86 supercomputing portfolio. Starting with its Red Storm supercomputer in 2004, which led to the company’s first commercial x86-based product, XT3, and then to subsequent platforms, XT4, XT5, XT6 and XE6/XK6, Cray has sold more cabinets with each successive generation. “If we keep that trend going,” says Ungaro, “we’ll be in good shape.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This