Green500 Turns Blue

By Michael Feldman

July 5, 2012

The latest Green500 rankings were announced last week, revealing that top performance and power efficiency can indeed go hand in hand. According to the latest list, the greenest machines, in fact the top 20 systems, were all IBM Blue Gene/Q supercomputers. Blue Gene/Q, of course, is the platform that captured the number one spot on the latest TOP500 list, and is represented by four of the ten fastest supercomputers in the world.

Not only did Blue Gene/Q dominate the top of the Green500, but did so in commanding fashion. Although the smaller Q machines tended be slightly more energy efficient, all 20 delivered more than 2,000 megaflops/watt. That turned out to be about twice as efficient as the average for the next 20 supercomputers on the list.

Of those following 20 systems, 10 are accelerator-based. In fact, the 21st and 22nd most efficient supercomputers are the Intel MIC-accelerated prototype cluster (1380.67 megaflops/watt) and the ATI Radeon-equipped DEGIMA cluster (1379.79 megaflops/per watt). The remainder all use NVIDIA GPU parts and are only somewhat less power-efficient.

It’s hard to draw a lot of conclusions about the efficiency of accelerator-equipped machines, since the ratio between the more energy-efficient GPUs (or MIC coprocessors) and the CPUs on these machines has a big impact on the overall results. In other words, a high GPU:CPU ratio system would tend to be yield more megaflops/watt than one with a lower ratio. Further, the current crop of accelerator-based systems tend to yield sub-par Linpack performance (the basis of both the TOP500 and Green500 results) compared to the machine’s peak performance, although this “bias” does point out that it can be difficult to extract performance and performance per watt from these heterogeneous platforms.

A number of x86 CPU-only systems, especially those employing the latest Intel “Sandy Bridge” processors, did rather well the latest rankings. In this category is the new 2.9 petaflop SuperMUC machine that just booted up at Germany’s Leibniz Supercomputing Centre (LRZ) . This IBM iDataPlex cluster sits at number 4 on the TOP500 list and manages a very respectable number 39 placement on the Green500. The system uses an innovative hot-water cooling system that not only saves energy costs, but whose waste heat is repurposed for local use at the LRZ facility. The machine also employs system software that is designed to optimize energy consumption.

The other instructive lesson of SuperMUC is that institutions are willing to endure relatively high energy costs to get leading-edge performance. (SuperMUC is currently the speediest supercomputer in Europe.) Even though its innovative cooling system will supposedly save around a million Euros per year, in energy costs, the high price of electricity in Germany will still make SuperMUC the most expensive supercomputer in Europe to operate.

According to Arndt Bode, LRZ’s chairman of the board who spoke about the new system at ISC’12, energy costs for them are rather steep — 0.158 €/kilowatt-hour as of 2010. That’s around 10 times the cost at Oak Ridge National Laboratory, perhaps the least expensive place to do supercomputing in the US, thanks in large part to cheap blocks of power that can be purchased from the Tennessee Valley Authority. Since SuperMUC consumes 3.4 megawatts, that means the Germans are paying for what an equivalent 34 megawatt system would cost the Oak Ridge boys today.

Considering that supercomputing designers have drawn a 20MW line in the sand for exascale systems, the Germans, in effect, have already resigned themselves to that level of cost. Of course, not everyone is going to be able to plop their exascale systems in the Tennessee Valley (or at other cheap energy locales like Iceland). And energy prices are likely to rise between now and the end of the decade, almost everywhere. But 20MW or more (maybe significantly more) is doable for at least some geographies today, assuming the HPC funding and political will is there.

Anyway you look at it, exaflops-level supercomputing is going to be an expensive proposition, at least initially. The average price of a megawatt in the US is a million dollars per year, and even at Oak Ridge, it probably costs between $200 to $300 thousand. That’s plenty of motivation to reduce the energy footprint of these machines.

Which brings us back to Blue Gene/Q. The largest such system today, the number one Sequoia machine at Lawrence Livermore, delivers 20 (peak) petaflops and draws 7.9MW when it’s running floating-point heavy codes like Linpack. But it would need to be 50 times more powerful to get to an exaflop and would also have to be 25 times as energy-efficient to squeeze such a machine into 20MW.

IBM appears to be on the right track here though, at least from the processor standpoint. Unlike a conventional x86-based HPC cluster, Blue Gene Q is powered by a custom SoC based on the PowerPC A2 core. That processor merges the network and compute on-chip, and is designed as a low-power, high throughput, and high core count (16) architecture. Clock frequency is a modest 1.6 GHz, which is about half that of a top bin Xeon. All exascale processors are likely to follow this general design.

It’s not all up to the processor, however. Memory and system network components will also need analogous redesigns to address their own power issues for exascale. By the way, it would be instructive if the Green500 could expand its mandate and develop useful performance per watt metrics aimed at main memory and interconnects. Linpack is a notoriously bad measurement for data movement, which has become the limiting factor for many applications, “big data” and otherwise. A starting point might be to incorporate the Graph 500 results into a separate set of Green500 rankings.

In the meantime, the list is drawing some much-needed attention to HPC power issues. And competition for those top Green500 spots is going to heat up. In the absence of a Blue Gene/R follow-on — and at this point, IBM has kept mum about extending the BG franchise — there is likely to be some stiff competition from machines powered by the upcoming NVIDIA Kepler K20 GPUs and Intel MIC coprocessors, and their successors. AMD APU-based systems might show up in a couple of years, and the newer SPARC64 offerings from Fujitsu or Chinese systems based on domestically designed chips like Godson may make their presence felt as well. The green revolution in HPC is just beginning.

Related Articles

TOP500 Gets Dressed Up with New Blue Genes

HPC Lists We’d Like to See

IBM Specs Out Blue Gene/Q Chip

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This