Green500 Turns Blue

By Michael Feldman

July 5, 2012

The latest Green500 rankings were announced last week, revealing that top performance and power efficiency can indeed go hand in hand. According to the latest list, the greenest machines, in fact the top 20 systems, were all IBM Blue Gene/Q supercomputers. Blue Gene/Q, of course, is the platform that captured the number one spot on the latest TOP500 list, and is represented by four of the ten fastest supercomputers in the world.

Not only did Blue Gene/Q dominate the top of the Green500, but did so in commanding fashion. Although the smaller Q machines tended be slightly more energy efficient, all 20 delivered more than 2,000 megaflops/watt. That turned out to be about twice as efficient as the average for the next 20 supercomputers on the list.

Of those following 20 systems, 10 are accelerator-based. In fact, the 21st and 22nd most efficient supercomputers are the Intel MIC-accelerated prototype cluster (1380.67 megaflops/watt) and the ATI Radeon-equipped DEGIMA cluster (1379.79 megaflops/per watt). The remainder all use NVIDIA GPU parts and are only somewhat less power-efficient.

It’s hard to draw a lot of conclusions about the efficiency of accelerator-equipped machines, since the ratio between the more energy-efficient GPUs (or MIC coprocessors) and the CPUs on these machines has a big impact on the overall results. In other words, a high GPU:CPU ratio system would tend to be yield more megaflops/watt than one with a lower ratio. Further, the current crop of accelerator-based systems tend to yield sub-par Linpack performance (the basis of both the TOP500 and Green500 results) compared to the machine’s peak performance, although this “bias” does point out that it can be difficult to extract performance and performance per watt from these heterogeneous platforms.

A number of x86 CPU-only systems, especially those employing the latest Intel “Sandy Bridge” processors, did rather well the latest rankings. In this category is the new 2.9 petaflop SuperMUC machine that just booted up at Germany’s Leibniz Supercomputing Centre (LRZ) . This IBM iDataPlex cluster sits at number 4 on the TOP500 list and manages a very respectable number 39 placement on the Green500. The system uses an innovative hot-water cooling system that not only saves energy costs, but whose waste heat is repurposed for local use at the LRZ facility. The machine also employs system software that is designed to optimize energy consumption.

The other instructive lesson of SuperMUC is that institutions are willing to endure relatively high energy costs to get leading-edge performance. (SuperMUC is currently the speediest supercomputer in Europe.) Even though its innovative cooling system will supposedly save around a million Euros per year, in energy costs, the high price of electricity in Germany will still make SuperMUC the most expensive supercomputer in Europe to operate.

According to Arndt Bode, LRZ’s chairman of the board who spoke about the new system at ISC’12, energy costs for them are rather steep — 0.158 €/kilowatt-hour as of 2010. That’s around 10 times the cost at Oak Ridge National Laboratory, perhaps the least expensive place to do supercomputing in the US, thanks in large part to cheap blocks of power that can be purchased from the Tennessee Valley Authority. Since SuperMUC consumes 3.4 megawatts, that means the Germans are paying for what an equivalent 34 megawatt system would cost the Oak Ridge boys today.

Considering that supercomputing designers have drawn a 20MW line in the sand for exascale systems, the Germans, in effect, have already resigned themselves to that level of cost. Of course, not everyone is going to be able to plop their exascale systems in the Tennessee Valley (or at other cheap energy locales like Iceland). And energy prices are likely to rise between now and the end of the decade, almost everywhere. But 20MW or more (maybe significantly more) is doable for at least some geographies today, assuming the HPC funding and political will is there.

Anyway you look at it, exaflops-level supercomputing is going to be an expensive proposition, at least initially. The average price of a megawatt in the US is a million dollars per year, and even at Oak Ridge, it probably costs between $200 to $300 thousand. That’s plenty of motivation to reduce the energy footprint of these machines.

Which brings us back to Blue Gene/Q. The largest such system today, the number one Sequoia machine at Lawrence Livermore, delivers 20 (peak) petaflops and draws 7.9MW when it’s running floating-point heavy codes like Linpack. But it would need to be 50 times more powerful to get to an exaflop and would also have to be 25 times as energy-efficient to squeeze such a machine into 20MW.

IBM appears to be on the right track here though, at least from the processor standpoint. Unlike a conventional x86-based HPC cluster, Blue Gene Q is powered by a custom SoC based on the PowerPC A2 core. That processor merges the network and compute on-chip, and is designed as a low-power, high throughput, and high core count (16) architecture. Clock frequency is a modest 1.6 GHz, which is about half that of a top bin Xeon. All exascale processors are likely to follow this general design.

It’s not all up to the processor, however. Memory and system network components will also need analogous redesigns to address their own power issues for exascale. By the way, it would be instructive if the Green500 could expand its mandate and develop useful performance per watt metrics aimed at main memory and interconnects. Linpack is a notoriously bad measurement for data movement, which has become the limiting factor for many applications, “big data” and otherwise. A starting point might be to incorporate the Graph 500 results into a separate set of Green500 rankings.

In the meantime, the list is drawing some much-needed attention to HPC power issues. And competition for those top Green500 spots is going to heat up. In the absence of a Blue Gene/R follow-on — and at this point, IBM has kept mum about extending the BG franchise — there is likely to be some stiff competition from machines powered by the upcoming NVIDIA Kepler K20 GPUs and Intel MIC coprocessors, and their successors. AMD APU-based systems might show up in a couple of years, and the newer SPARC64 offerings from Fujitsu or Chinese systems based on domestically designed chips like Godson may make their presence felt as well. The green revolution in HPC is just beginning.

Related Articles

TOP500 Gets Dressed Up with New Blue Genes

HPC Lists We’d Like to See

IBM Specs Out Blue Gene/Q Chip

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This