Green500 Turns Blue

By Michael Feldman

July 5, 2012

The latest Green500 rankings were announced last week, revealing that top performance and power efficiency can indeed go hand in hand. According to the latest list, the greenest machines, in fact the top 20 systems, were all IBM Blue Gene/Q supercomputers. Blue Gene/Q, of course, is the platform that captured the number one spot on the latest TOP500 list, and is represented by four of the ten fastest supercomputers in the world.

Not only did Blue Gene/Q dominate the top of the Green500, but did so in commanding fashion. Although the smaller Q machines tended be slightly more energy efficient, all 20 delivered more than 2,000 megaflops/watt. That turned out to be about twice as efficient as the average for the next 20 supercomputers on the list.

Of those following 20 systems, 10 are accelerator-based. In fact, the 21st and 22nd most efficient supercomputers are the Intel MIC-accelerated prototype cluster (1380.67 megaflops/watt) and the ATI Radeon-equipped DEGIMA cluster (1379.79 megaflops/per watt). The remainder all use NVIDIA GPU parts and are only somewhat less power-efficient.

It’s hard to draw a lot of conclusions about the efficiency of accelerator-equipped machines, since the ratio between the more energy-efficient GPUs (or MIC coprocessors) and the CPUs on these machines has a big impact on the overall results. In other words, a high GPU:CPU ratio system would tend to be yield more megaflops/watt than one with a lower ratio. Further, the current crop of accelerator-based systems tend to yield sub-par Linpack performance (the basis of both the TOP500 and Green500 results) compared to the machine’s peak performance, although this “bias” does point out that it can be difficult to extract performance and performance per watt from these heterogeneous platforms.

A number of x86 CPU-only systems, especially those employing the latest Intel “Sandy Bridge” processors, did rather well the latest rankings. In this category is the new 2.9 petaflop SuperMUC machine that just booted up at Germany’s Leibniz Supercomputing Centre (LRZ) . This IBM iDataPlex cluster sits at number 4 on the TOP500 list and manages a very respectable number 39 placement on the Green500. The system uses an innovative hot-water cooling system that not only saves energy costs, but whose waste heat is repurposed for local use at the LRZ facility. The machine also employs system software that is designed to optimize energy consumption.

The other instructive lesson of SuperMUC is that institutions are willing to endure relatively high energy costs to get leading-edge performance. (SuperMUC is currently the speediest supercomputer in Europe.) Even though its innovative cooling system will supposedly save around a million Euros per year, in energy costs, the high price of electricity in Germany will still make SuperMUC the most expensive supercomputer in Europe to operate.

According to Arndt Bode, LRZ’s chairman of the board who spoke about the new system at ISC’12, energy costs for them are rather steep — 0.158 €/kilowatt-hour as of 2010. That’s around 10 times the cost at Oak Ridge National Laboratory, perhaps the least expensive place to do supercomputing in the US, thanks in large part to cheap blocks of power that can be purchased from the Tennessee Valley Authority. Since SuperMUC consumes 3.4 megawatts, that means the Germans are paying for what an equivalent 34 megawatt system would cost the Oak Ridge boys today.

Considering that supercomputing designers have drawn a 20MW line in the sand for exascale systems, the Germans, in effect, have already resigned themselves to that level of cost. Of course, not everyone is going to be able to plop their exascale systems in the Tennessee Valley (or at other cheap energy locales like Iceland). And energy prices are likely to rise between now and the end of the decade, almost everywhere. But 20MW or more (maybe significantly more) is doable for at least some geographies today, assuming the HPC funding and political will is there.

Anyway you look at it, exaflops-level supercomputing is going to be an expensive proposition, at least initially. The average price of a megawatt in the US is a million dollars per year, and even at Oak Ridge, it probably costs between $200 to $300 thousand. That’s plenty of motivation to reduce the energy footprint of these machines.

Which brings us back to Blue Gene/Q. The largest such system today, the number one Sequoia machine at Lawrence Livermore, delivers 20 (peak) petaflops and draws 7.9MW when it’s running floating-point heavy codes like Linpack. But it would need to be 50 times more powerful to get to an exaflop and would also have to be 25 times as energy-efficient to squeeze such a machine into 20MW.

IBM appears to be on the right track here though, at least from the processor standpoint. Unlike a conventional x86-based HPC cluster, Blue Gene Q is powered by a custom SoC based on the PowerPC A2 core. That processor merges the network and compute on-chip, and is designed as a low-power, high throughput, and high core count (16) architecture. Clock frequency is a modest 1.6 GHz, which is about half that of a top bin Xeon. All exascale processors are likely to follow this general design.

It’s not all up to the processor, however. Memory and system network components will also need analogous redesigns to address their own power issues for exascale. By the way, it would be instructive if the Green500 could expand its mandate and develop useful performance per watt metrics aimed at main memory and interconnects. Linpack is a notoriously bad measurement for data movement, which has become the limiting factor for many applications, “big data” and otherwise. A starting point might be to incorporate the Graph 500 results into a separate set of Green500 rankings.

In the meantime, the list is drawing some much-needed attention to HPC power issues. And competition for those top Green500 spots is going to heat up. In the absence of a Blue Gene/R follow-on — and at this point, IBM has kept mum about extending the BG franchise — there is likely to be some stiff competition from machines powered by the upcoming NVIDIA Kepler K20 GPUs and Intel MIC coprocessors, and their successors. AMD APU-based systems might show up in a couple of years, and the newer SPARC64 offerings from Fujitsu or Chinese systems based on domestically designed chips like Godson may make their presence felt as well. The green revolution in HPC is just beginning.

Related Articles

TOP500 Gets Dressed Up with New Blue Genes

HPC Lists We’d Like to See

IBM Specs Out Blue Gene/Q Chip

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This