Green500 Turns Blue

By Michael Feldman

July 5, 2012

The latest Green500 rankings were announced last week, revealing that top performance and power efficiency can indeed go hand in hand. According to the latest list, the greenest machines, in fact the top 20 systems, were all IBM Blue Gene/Q supercomputers. Blue Gene/Q, of course, is the platform that captured the number one spot on the latest TOP500 list, and is represented by four of the ten fastest supercomputers in the world.

Not only did Blue Gene/Q dominate the top of the Green500, but did so in commanding fashion. Although the smaller Q machines tended be slightly more energy efficient, all 20 delivered more than 2,000 megaflops/watt. That turned out to be about twice as efficient as the average for the next 20 supercomputers on the list.

Of those following 20 systems, 10 are accelerator-based. In fact, the 21st and 22nd most efficient supercomputers are the Intel MIC-accelerated prototype cluster (1380.67 megaflops/watt) and the ATI Radeon-equipped DEGIMA cluster (1379.79 megaflops/per watt). The remainder all use NVIDIA GPU parts and are only somewhat less power-efficient.

It’s hard to draw a lot of conclusions about the efficiency of accelerator-equipped machines, since the ratio between the more energy-efficient GPUs (or MIC coprocessors) and the CPUs on these machines has a big impact on the overall results. In other words, a high GPU:CPU ratio system would tend to be yield more megaflops/watt than one with a lower ratio. Further, the current crop of accelerator-based systems tend to yield sub-par Linpack performance (the basis of both the TOP500 and Green500 results) compared to the machine’s peak performance, although this “bias” does point out that it can be difficult to extract performance and performance per watt from these heterogeneous platforms.

A number of x86 CPU-only systems, especially those employing the latest Intel “Sandy Bridge” processors, did rather well the latest rankings. In this category is the new 2.9 petaflop SuperMUC machine that just booted up at Germany’s Leibniz Supercomputing Centre (LRZ) . This IBM iDataPlex cluster sits at number 4 on the TOP500 list and manages a very respectable number 39 placement on the Green500. The system uses an innovative hot-water cooling system that not only saves energy costs, but whose waste heat is repurposed for local use at the LRZ facility. The machine also employs system software that is designed to optimize energy consumption.

The other instructive lesson of SuperMUC is that institutions are willing to endure relatively high energy costs to get leading-edge performance. (SuperMUC is currently the speediest supercomputer in Europe.) Even though its innovative cooling system will supposedly save around a million Euros per year, in energy costs, the high price of electricity in Germany will still make SuperMUC the most expensive supercomputer in Europe to operate.

According to Arndt Bode, LRZ’s chairman of the board who spoke about the new system at ISC’12, energy costs for them are rather steep — 0.158 €/kilowatt-hour as of 2010. That’s around 10 times the cost at Oak Ridge National Laboratory, perhaps the least expensive place to do supercomputing in the US, thanks in large part to cheap blocks of power that can be purchased from the Tennessee Valley Authority. Since SuperMUC consumes 3.4 megawatts, that means the Germans are paying for what an equivalent 34 megawatt system would cost the Oak Ridge boys today.

Considering that supercomputing designers have drawn a 20MW line in the sand for exascale systems, the Germans, in effect, have already resigned themselves to that level of cost. Of course, not everyone is going to be able to plop their exascale systems in the Tennessee Valley (or at other cheap energy locales like Iceland). And energy prices are likely to rise between now and the end of the decade, almost everywhere. But 20MW or more (maybe significantly more) is doable for at least some geographies today, assuming the HPC funding and political will is there.

Anyway you look at it, exaflops-level supercomputing is going to be an expensive proposition, at least initially. The average price of a megawatt in the US is a million dollars per year, and even at Oak Ridge, it probably costs between $200 to $300 thousand. That’s plenty of motivation to reduce the energy footprint of these machines.

Which brings us back to Blue Gene/Q. The largest such system today, the number one Sequoia machine at Lawrence Livermore, delivers 20 (peak) petaflops and draws 7.9MW when it’s running floating-point heavy codes like Linpack. But it would need to be 50 times more powerful to get to an exaflop and would also have to be 25 times as energy-efficient to squeeze such a machine into 20MW.

IBM appears to be on the right track here though, at least from the processor standpoint. Unlike a conventional x86-based HPC cluster, Blue Gene Q is powered by a custom SoC based on the PowerPC A2 core. That processor merges the network and compute on-chip, and is designed as a low-power, high throughput, and high core count (16) architecture. Clock frequency is a modest 1.6 GHz, which is about half that of a top bin Xeon. All exascale processors are likely to follow this general design.

It’s not all up to the processor, however. Memory and system network components will also need analogous redesigns to address their own power issues for exascale. By the way, it would be instructive if the Green500 could expand its mandate and develop useful performance per watt metrics aimed at main memory and interconnects. Linpack is a notoriously bad measurement for data movement, which has become the limiting factor for many applications, “big data” and otherwise. A starting point might be to incorporate the Graph 500 results into a separate set of Green500 rankings.

In the meantime, the list is drawing some much-needed attention to HPC power issues. And competition for those top Green500 spots is going to heat up. In the absence of a Blue Gene/R follow-on — and at this point, IBM has kept mum about extending the BG franchise — there is likely to be some stiff competition from machines powered by the upcoming NVIDIA Kepler K20 GPUs and Intel MIC coprocessors, and their successors. AMD APU-based systems might show up in a couple of years, and the newer SPARC64 offerings from Fujitsu or Chinese systems based on domestically designed chips like Godson may make their presence felt as well. The green revolution in HPC is just beginning.

Related Articles

TOP500 Gets Dressed Up with New Blue Genes

HPC Lists We’d Like to See

IBM Specs Out Blue Gene/Q Chip

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This