Hybrid Memory Cube Angles for Exascale

By Michael Feldman

July 10, 2012

Computer memory is currently undergoing something of an identity crisis. For the past 8 years, multicore microprocessors have been creating a performance discontinuity, the so-called memory wall. It’s now fairly clear that this widening gap between compute and memory performance will not be solved with conventional dynamic random-access memory (DRAM) products. But there is one technology under development that aims to close that gap, and its first use case will likely be in the ethereal realm of supercomputing.

About a year and half ago, memory-maker Micron Technology came up with the Hybrid Memory Cube (HMC), a multi-chip module (MCM) device specifically designed to scale the memory wall. The goal was to offer a memory technology that matches the needs of core-happy CPUs and GPUs and do so in a way that is attractive to computer makers.

In a nutshell, HMC glues a logic control chip to a 3D memory stack, all of which are connected with Through Silicon Vias (TSVs). The technology promises not only to deliver an order of magnitude performance increase, but also to keep pace with future microprocessors as those designs continue to add cores. Micron claims a single HMC device can deliver 15 times the performance of today’s DDR3 modules and can do so with 70 percent less energy and in 90 percent less space. Latency is expected to decrease as well, although no specific claims are being made in that regard.

According to Dean Klein, VP of Micron’s Memory System Development, the problem with conventional DRAM technology is that they’ve pushed CMOS technology about as far as it’s going to go under the DDR model. Although DDR4 products are slated to ship before this end year, there is currently no DDR5 on the drawing board. That’s a problem, especially considering that DDR5 would probably be coming out toward the end of the decade, just when the first exascale supercomputers are expected to appear.

But even if DDR evolution is maintained through 2020, it would almost certainly fall short of the needs of exascale computing. Such machines are expected to require per-node memory bandwidth in excess of 500 terabytes/second. Klein says they just can’t boost the signal rates much more on the DDR design, and if they tried, power consumption would go in the wrong direction.

The HMC design gets around those limitations by going vertical and using the TSV technology to parallelize communication to the stack of memory chips, which enables much higher transfer rates. Bandwidth between the logic and the DRAM chips are projected to top a terabit per second (128 GB/second), which is much more in line with exascale needs.

Another important aspect of the design is that the interface abstracts the notion of reads and writes. That means a microprocessor’s memory controller doesn’t need to know about the underlying technology that stores the bits. So one could build an HMC device that was made up of DRAM or NAND flash, or even some combination of these technologies. That frees up the microprocessor and other peripheral devices from being locked into a particular memory type and, in general, should make system designs more flexible.

To move HMC beyond a science project, Micron put together a consortium and attracted key players, including competitors, to back the technology. Today the Hybrid Memory Cube Consortium consists of some of the industry’s heaviest hitters: Samsung, Microsoft, IBM, ARM, HP, IBM, Altera, Xilinx, Open-Silicon, and SK hynix. The group’s immediate goal is to develop a standard interface for the technology so that multiple manufacturers can build compliant HMC devices. The formal standard is due out later this year.

A key partner with Micron has been Intel, a vendor with a particular interest in high-performance memory. The chipmaker’s immediate motivation to support HMC is its Xeon line (including, soon, the manycore Xeon Phi), which is especially dependent on performant memory. In fact, without such memory, the value of high-end server chips is greatly diminished, since additional cores doesn’t translate into more performance for the end user. The relative success of future multicore and manycore processors will depend, to a large extent, on memory wall-busting technology.

Further out, Intel is looking at HMC as a technology to support its own aspirations to develop components for exascale supercomputers. Last year Intel helped Micron build an HMC prototype, which CTO Justin Rattner talked up at last September’s Intel Developer Forum. Although the chipmaker will presumably assist Micron if and when it starts churning out commercial silicon, neither company has offered a timeline for an HMC product launch. Klein did say that its prototype has been in the hands of select customers (HPC users and others) for several months, and their intent is to commercialize the technology.

And not just for high performance computing market. Although supercomputing has the greatest immediate need for such technology, other application areas, like networking, could also benefit greatly from HMC’s high bandwidth characteristics. And because of the promised power savings, even the high-volume mobile computing market is a potential target.

The biggest challenge for HMC is likely to be price. In particular, the use of TSV and 3D chip-stacking is in its infancy and by all accounts, will not come cheaply — at least not initially. And when you’re talking about 10PB of memory for an exascale machine or 1MB for a mobile phone, cost is a big consideration.

Other technologies like HP’s memristor, Magneto-resistive Random-Access Memory (MRAM), or Phase Change Memory (PCM) could come to the fore in time for the exascale era, but each one has its own challenges. As Klein notes, there is no holy grail of memory that encapsulates every desired attribute — high performance, low-cost, non-volatile, low-power, and infinite endurance.

The nice thing about HMC is that it can encapsulate DRAM as well as other memory technologies as they prove themselves. For the time being though, dynamic random-access memory will remain as the foundation of computer memory in the datacenter. “DRAM is certainly going to with us, at least until the end of the decade,” admits Klein. “We really don’t have a replace technology that looks as attractive.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology creators in hardware and software. The most recent example bei Read more…

By John Russell

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Clemson’s Cautionary Cryptomining Tale

December 11, 2018

In some ways, the bigger the computer, the more vulnerable it is to cryptomining as Clemson University discovered after cryptominers dug into its Palmetto supercomputer. When a number of nodes on Clemson University’s P Read more…

By Staff

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Blurring the Lines Between HPC and AI @ SC18

The dominant topic at SC18 was the convergence of HPC and Artificial Intelligence (AI) with some of the biggest research and enterprise HPC users providing perspectives on how HPC and AI are moving closer together. Read more…

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This