Hybrid Memory Cube Angles for Exascale

By Michael Feldman

July 10, 2012

Computer memory is currently undergoing something of an identity crisis. For the past 8 years, multicore microprocessors have been creating a performance discontinuity, the so-called memory wall. It’s now fairly clear that this widening gap between compute and memory performance will not be solved with conventional dynamic random-access memory (DRAM) products. But there is one technology under development that aims to close that gap, and its first use case will likely be in the ethereal realm of supercomputing.

About a year and half ago, memory-maker Micron Technology came up with the Hybrid Memory Cube (HMC), a multi-chip module (MCM) device specifically designed to scale the memory wall. The goal was to offer a memory technology that matches the needs of core-happy CPUs and GPUs and do so in a way that is attractive to computer makers.

In a nutshell, HMC glues a logic control chip to a 3D memory stack, all of which are connected with Through Silicon Vias (TSVs). The technology promises not only to deliver an order of magnitude performance increase, but also to keep pace with future microprocessors as those designs continue to add cores. Micron claims a single HMC device can deliver 15 times the performance of today’s DDR3 modules and can do so with 70 percent less energy and in 90 percent less space. Latency is expected to decrease as well, although no specific claims are being made in that regard.

According to Dean Klein, VP of Micron’s Memory System Development, the problem with conventional DRAM technology is that they’ve pushed CMOS technology about as far as it’s going to go under the DDR model. Although DDR4 products are slated to ship before this end year, there is currently no DDR5 on the drawing board. That’s a problem, especially considering that DDR5 would probably be coming out toward the end of the decade, just when the first exascale supercomputers are expected to appear.

But even if DDR evolution is maintained through 2020, it would almost certainly fall short of the needs of exascale computing. Such machines are expected to require per-node memory bandwidth in excess of 500 terabytes/second. Klein says they just can’t boost the signal rates much more on the DDR design, and if they tried, power consumption would go in the wrong direction.

The HMC design gets around those limitations by going vertical and using the TSV technology to parallelize communication to the stack of memory chips, which enables much higher transfer rates. Bandwidth between the logic and the DRAM chips are projected to top a terabit per second (128 GB/second), which is much more in line with exascale needs.

Another important aspect of the design is that the interface abstracts the notion of reads and writes. That means a microprocessor’s memory controller doesn’t need to know about the underlying technology that stores the bits. So one could build an HMC device that was made up of DRAM or NAND flash, or even some combination of these technologies. That frees up the microprocessor and other peripheral devices from being locked into a particular memory type and, in general, should make system designs more flexible.

To move HMC beyond a science project, Micron put together a consortium and attracted key players, including competitors, to back the technology. Today the Hybrid Memory Cube Consortium consists of some of the industry’s heaviest hitters: Samsung, Microsoft, IBM, ARM, HP, IBM, Altera, Xilinx, Open-Silicon, and SK hynix. The group’s immediate goal is to develop a standard interface for the technology so that multiple manufacturers can build compliant HMC devices. The formal standard is due out later this year.

A key partner with Micron has been Intel, a vendor with a particular interest in high-performance memory. The chipmaker’s immediate motivation to support HMC is its Xeon line (including, soon, the manycore Xeon Phi), which is especially dependent on performant memory. In fact, without such memory, the value of high-end server chips is greatly diminished, since additional cores doesn’t translate into more performance for the end user. The relative success of future multicore and manycore processors will depend, to a large extent, on memory wall-busting technology.

Further out, Intel is looking at HMC as a technology to support its own aspirations to develop components for exascale supercomputers. Last year Intel helped Micron build an HMC prototype, which CTO Justin Rattner talked up at last September’s Intel Developer Forum. Although the chipmaker will presumably assist Micron if and when it starts churning out commercial silicon, neither company has offered a timeline for an HMC product launch. Klein did say that its prototype has been in the hands of select customers (HPC users and others) for several months, and their intent is to commercialize the technology.

And not just for high performance computing market. Although supercomputing has the greatest immediate need for such technology, other application areas, like networking, could also benefit greatly from HMC’s high bandwidth characteristics. And because of the promised power savings, even the high-volume mobile computing market is a potential target.

The biggest challenge for HMC is likely to be price. In particular, the use of TSV and 3D chip-stacking is in its infancy and by all accounts, will not come cheaply — at least not initially. And when you’re talking about 10PB of memory for an exascale machine or 1MB for a mobile phone, cost is a big consideration.

Other technologies like HP’s memristor, Magneto-resistive Random-Access Memory (MRAM), or Phase Change Memory (PCM) could come to the fore in time for the exascale era, but each one has its own challenges. As Klein notes, there is no holy grail of memory that encapsulates every desired attribute — high performance, low-cost, non-volatile, low-power, and infinite endurance.

The nice thing about HMC is that it can encapsulate DRAM as well as other memory technologies as they prove themselves. For the time being though, dynamic random-access memory will remain as the foundation of computer memory in the datacenter. “DRAM is certainly going to with us, at least until the end of the decade,” admits Klein. “We really don’t have a replace technology that looks as attractive.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This