DOE Primes Pump for Exascale Supercomputers

By Michael Feldman

July 12, 2012

Intel, AMD, NVIDIA, and Whamcloud have been awarded tens of millions of dollars by the US Department of Energy (DOE) to kick-start research and development required to build exascale supercomputers. The work will be performed under the FastForward program, a joint effort run by the DOE Office of Science and the National Nuclear Security Administration (NNSA) that will focus on developing future hardware and software technologies capable of supporting such machines.

The program is being contracted through Lawrence Livermore National Security, LLC as part of a multi-lab consortium that includes Argonne National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories.

Although we’re only six to eight years away from the first exaflops systems, the DOE’s primary exascale program has yet to be funded. (And since this is an election year in the US, such funding will probably not fall into place until 2013.) In the interim, FastForward was devised in order to begin the needed R&D for some of the exascale foundational technologies, in particular, processors, memory and storage.

At least some of the impetus for the program came from the vendors themselves. According to Mark Seager, Intel’s CTO for the company’s High Performance Computing Ecosystem group, the DOE was told by multiple commercial partners that research for the component pieces needed to get underway this year if they hoped to field an exascale machine by 2020. That led to the formation of the program, and apparently there was enough loose change rolling around at the Office of Science and NNSA to fund this more modest effort.

Although all the FastForward subcontracts have yet to be made public, as of today there are four known awards:

  • Intel: $19 million for both processor and memory technologies
  • AMD: $12.6 million for processor and memory technologies
  • NVIDIA: $12 million for processor technology
  • Whamcloud (along with EMC, Cray and HDF Group): Unknown dollar amount for storage and I/O technologies

Although the work is not intended to fund the development of “near-term capabilities” that are already on vendors’ existing product roadmaps, all of this work will be based upon ongoing R&D efforts at these companies. The DOE is fine with this since the commercialization of these technologies is really the only way these government agencies can be assured of cost-effective exascale machines. The FastForward statement of work makes a point of spelling out this arrangement, thusly: “While DOE’s extreme-scale computer requirements are a driving factor, these projects must also exhibit the potential for technology adoption by broader segments of the market outside of DOE supercomputer installations.”

For example, Intel’s FastForward processor work will be based on the company’s MIC (Many Integrated Core) architecture, which the company is initially aiming at the supercomputing market, but with the intent to extend it into big data business applications and beyond. The first MIC product, under the Xeon Phi brand, is scheduled to be launched before the end of 2012, but this initial offering is at least a couple of generations away from supporting exascale-capable machines. According to Seager, a future processor of this kind will need much improved energy efficiency, a revamped memory interface, and higher resiliency.

Although the x86 ISA will be retained, this future MIC architecture will incorporate some “radical approaches” to bring the technology into the exascale realm. To begin with, says Seager, that means reducing its power draw two to three times greater than what would naturally be achieved with transistor shrinkage over the rest of the decade. “It’s a daunting challenge to do better than what Moore’s Law will give you,” Seager told HPCwire.

Fortunately, he says, Intel will be able to leverage its near-threshold voltage circuitry research, some of which was funded under UHPC (Ubiquitous High Performance Computing), DARPA’s now defunct exascale program. Shekhar Borkar, who was the PI for the UHPC work, along with Seager and former IBM’er Al Gara, will be heading up the FastForward work at Intel.

For the exascale memory subcontract, Intel will be leveraging its work with Micron Technology on the Hybrid Memory Cube. The idea is to use similar technology to incorporate 3D stacks of memory chips into the same package as the processor. In-package integration shortens the distance considerably between the processor and the memory, which significantly increases bandwidth and lowers latency. At the same time, cache management is going to be redesigned to optimize the power-performance of memory reads and writes.

Like Intel, AMD will be basing its FastForward processor research on a current design, in this case the company’s APU (Accelerated Processing Unit) product line and the related Heterogeneous Systems Architecture (HSA) standard — that according to Alan Lee, AMD’s corporate vice president for Advanced Research and Development. The current crop of APUs, which integrate CPUs and GPUs on-chip, are aimed at consumer devices, such as laptops, netbooks, and other mobile gear. But AMD has designs on extending its heterogeneous portfolio into the server arena, and the DOE just gave them about 12 million more reasons to do so.

Since AMD first needs to transform their APU into a server design, the chipmaker has a somewhat different, and perhaps longer path to exascale than Intel, which is at least starting with server-ready silicon. On the other hand the MIC architecture is not heterogenous (and may never be), so AMD does have a certain advantage there. “That is the truly unique technology and the strongest one that AMD brings to bear — that we have a world-class CPU and GPU brought together in a single APU,” says Lee.

Lee was less forthcoming about the starting point for the memory research under the FastForward work, other than to say it would be optimizing the technology around its heterogeneous architecture and would involve high-speed interconnects as well as different types and arrangements of memory.

More than anything, Lee sees this R&D work as producing dividends in other areas of AMD’s business. He says the fundamental technologies that the DOE wants for exascale are those the computer industry needs, not just in the future, but right now, referring to the big data domain, in particular. “I expect that a lot of the technology that you see us develop has the potential to make it into a variety of different server products of different genres,” says Lee.

To counterbalance the Intel and AMD work, is NVIDIA, which will be using the company’s Echelon design as the starting point for its FastForward work. Echelon, which was also funded under DARPA’s UHPC program, is based on a future 20-teraflop microprocessor that integrates 128 streaming processors, 8 latency (CPU-type) processors, and 256MB of SRAM memory on-chip. The technology is in line to follow Maxwell, NVIDIA’s GPU architecture scheduled to take the reigns from Kepler in a couple of years. Unlike the Intel and AMD efforts, NVIDIA’s contract is for processor technology only, although the Echelon design also specified an exascale-capable memory subsystem.

While the DOE spread its bets around for the FastForward processor- and memory-based research, there was only one storage subcontract awarded. That went to Whamcloud, who in conjunction with EMC, Cray and HDF Group, got the nod to provide the R&D work for storage and I/O.

The work specifies bringing object storage into the exascale realm, and will be based on the Lustre parallel file system technology. As a result, any development in this area will be open sourced and be available to the Lustre community.

Although the FastForward contracts limit their scope to specific exascale components, rather than complete systems, the research won’t be performed in a complete vacuum. The vendors are expected to work in conjunction with the DOE’s exascale co-design centers, a group that encapsulates various proxy applications, algorithms, and programming models important to the agency. The idea is to align the vendor R&D designs with the DOE’s application needs and expectations, the implication being that these are general enough to apply to a wide range of exascale codes both inside and outside the Energy Department.

All the FastForward contracts have a two-year lifetime, so are slated to expire in 2014. The follow-on DOE work to design and build entire exascale supercomputers are dependent on future budgets. Assuming the feds comes through with the funding, that effort is expected to cost hundreds of millions of dollars over the next several years.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This