DOE Primes Pump for Exascale Supercomputers

By Michael Feldman

July 12, 2012

Intel, AMD, NVIDIA, and Whamcloud have been awarded tens of millions of dollars by the US Department of Energy (DOE) to kick-start research and development required to build exascale supercomputers. The work will be performed under the FastForward program, a joint effort run by the DOE Office of Science and the National Nuclear Security Administration (NNSA) that will focus on developing future hardware and software technologies capable of supporting such machines.

The program is being contracted through Lawrence Livermore National Security, LLC as part of a multi-lab consortium that includes Argonne National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories.

Although we’re only six to eight years away from the first exaflops systems, the DOE’s primary exascale program has yet to be funded. (And since this is an election year in the US, such funding will probably not fall into place until 2013.) In the interim, FastForward was devised in order to begin the needed R&D for some of the exascale foundational technologies, in particular, processors, memory and storage.

At least some of the impetus for the program came from the vendors themselves. According to Mark Seager, Intel’s CTO for the company’s High Performance Computing Ecosystem group, the DOE was told by multiple commercial partners that research for the component pieces needed to get underway this year if they hoped to field an exascale machine by 2020. That led to the formation of the program, and apparently there was enough loose change rolling around at the Office of Science and NNSA to fund this more modest effort.

Although all the FastForward subcontracts have yet to be made public, as of today there are four known awards:

  • Intel: $19 million for both processor and memory technologies
  • AMD: $12.6 million for processor and memory technologies
  • NVIDIA: $12 million for processor technology
  • Whamcloud (along with EMC, Cray and HDF Group): Unknown dollar amount for storage and I/O technologies

Although the work is not intended to fund the development of “near-term capabilities” that are already on vendors’ existing product roadmaps, all of this work will be based upon ongoing R&D efforts at these companies. The DOE is fine with this since the commercialization of these technologies is really the only way these government agencies can be assured of cost-effective exascale machines. The FastForward statement of work makes a point of spelling out this arrangement, thusly: “While DOE’s extreme-scale computer requirements are a driving factor, these projects must also exhibit the potential for technology adoption by broader segments of the market outside of DOE supercomputer installations.”

For example, Intel’s FastForward processor work will be based on the company’s MIC (Many Integrated Core) architecture, which the company is initially aiming at the supercomputing market, but with the intent to extend it into big data business applications and beyond. The first MIC product, under the Xeon Phi brand, is scheduled to be launched before the end of 2012, but this initial offering is at least a couple of generations away from supporting exascale-capable machines. According to Seager, a future processor of this kind will need much improved energy efficiency, a revamped memory interface, and higher resiliency.

Although the x86 ISA will be retained, this future MIC architecture will incorporate some “radical approaches” to bring the technology into the exascale realm. To begin with, says Seager, that means reducing its power draw two to three times greater than what would naturally be achieved with transistor shrinkage over the rest of the decade. “It’s a daunting challenge to do better than what Moore’s Law will give you,” Seager told HPCwire.

Fortunately, he says, Intel will be able to leverage its near-threshold voltage circuitry research, some of which was funded under UHPC (Ubiquitous High Performance Computing), DARPA’s now defunct exascale program. Shekhar Borkar, who was the PI for the UHPC work, along with Seager and former IBM’er Al Gara, will be heading up the FastForward work at Intel.

For the exascale memory subcontract, Intel will be leveraging its work with Micron Technology on the Hybrid Memory Cube. The idea is to use similar technology to incorporate 3D stacks of memory chips into the same package as the processor. In-package integration shortens the distance considerably between the processor and the memory, which significantly increases bandwidth and lowers latency. At the same time, cache management is going to be redesigned to optimize the power-performance of memory reads and writes.

Like Intel, AMD will be basing its FastForward processor research on a current design, in this case the company’s APU (Accelerated Processing Unit) product line and the related Heterogeneous Systems Architecture (HSA) standard — that according to Alan Lee, AMD’s corporate vice president for Advanced Research and Development. The current crop of APUs, which integrate CPUs and GPUs on-chip, are aimed at consumer devices, such as laptops, netbooks, and other mobile gear. But AMD has designs on extending its heterogeneous portfolio into the server arena, and the DOE just gave them about 12 million more reasons to do so.

Since AMD first needs to transform their APU into a server design, the chipmaker has a somewhat different, and perhaps longer path to exascale than Intel, which is at least starting with server-ready silicon. On the other hand the MIC architecture is not heterogenous (and may never be), so AMD does have a certain advantage there. “That is the truly unique technology and the strongest one that AMD brings to bear — that we have a world-class CPU and GPU brought together in a single APU,” says Lee.

Lee was less forthcoming about the starting point for the memory research under the FastForward work, other than to say it would be optimizing the technology around its heterogeneous architecture and would involve high-speed interconnects as well as different types and arrangements of memory.

More than anything, Lee sees this R&D work as producing dividends in other areas of AMD’s business. He says the fundamental technologies that the DOE wants for exascale are those the computer industry needs, not just in the future, but right now, referring to the big data domain, in particular. “I expect that a lot of the technology that you see us develop has the potential to make it into a variety of different server products of different genres,” says Lee.

To counterbalance the Intel and AMD work, is NVIDIA, which will be using the company’s Echelon design as the starting point for its FastForward work. Echelon, which was also funded under DARPA’s UHPC program, is based on a future 20-teraflop microprocessor that integrates 128 streaming processors, 8 latency (CPU-type) processors, and 256MB of SRAM memory on-chip. The technology is in line to follow Maxwell, NVIDIA’s GPU architecture scheduled to take the reigns from Kepler in a couple of years. Unlike the Intel and AMD efforts, NVIDIA’s contract is for processor technology only, although the Echelon design also specified an exascale-capable memory subsystem.

While the DOE spread its bets around for the FastForward processor- and memory-based research, there was only one storage subcontract awarded. That went to Whamcloud, who in conjunction with EMC, Cray and HDF Group, got the nod to provide the R&D work for storage and I/O.

The work specifies bringing object storage into the exascale realm, and will be based on the Lustre parallel file system technology. As a result, any development in this area will be open sourced and be available to the Lustre community.

Although the FastForward contracts limit their scope to specific exascale components, rather than complete systems, the research won’t be performed in a complete vacuum. The vendors are expected to work in conjunction with the DOE’s exascale co-design centers, a group that encapsulates various proxy applications, algorithms, and programming models important to the agency. The idea is to align the vendor R&D designs with the DOE’s application needs and expectations, the implication being that these are general enough to apply to a wide range of exascale codes both inside and outside the Energy Department.

All the FastForward contracts have a two-year lifetime, so are slated to expire in 2014. The follow-on DOE work to design and build entire exascale supercomputers are dependent on future budgets. Assuming the feds comes through with the funding, that effort is expected to cost hundreds of millions of dollars over the next several years.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 13), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue’s max capacity and doubling 2016 attendee numbers), the one Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 13), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This