DOE Primes Pump for Exascale Supercomputers

By Michael Feldman

July 12, 2012

Intel, AMD, NVIDIA, and Whamcloud have been awarded tens of millions of dollars by the US Department of Energy (DOE) to kick-start research and development required to build exascale supercomputers. The work will be performed under the FastForward program, a joint effort run by the DOE Office of Science and the National Nuclear Security Administration (NNSA) that will focus on developing future hardware and software technologies capable of supporting such machines.

The program is being contracted through Lawrence Livermore National Security, LLC as part of a multi-lab consortium that includes Argonne National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories.

Although we’re only six to eight years away from the first exaflops systems, the DOE’s primary exascale program has yet to be funded. (And since this is an election year in the US, such funding will probably not fall into place until 2013.) In the interim, FastForward was devised in order to begin the needed R&D for some of the exascale foundational technologies, in particular, processors, memory and storage.

At least some of the impetus for the program came from the vendors themselves. According to Mark Seager, Intel’s CTO for the company’s High Performance Computing Ecosystem group, the DOE was told by multiple commercial partners that research for the component pieces needed to get underway this year if they hoped to field an exascale machine by 2020. That led to the formation of the program, and apparently there was enough loose change rolling around at the Office of Science and NNSA to fund this more modest effort.

Although all the FastForward subcontracts have yet to be made public, as of today there are four known awards:

  • Intel: $19 million for both processor and memory technologies
  • AMD: $12.6 million for processor and memory technologies
  • NVIDIA: $12 million for processor technology
  • Whamcloud (along with EMC, Cray and HDF Group): Unknown dollar amount for storage and I/O technologies

Although the work is not intended to fund the development of “near-term capabilities” that are already on vendors’ existing product roadmaps, all of this work will be based upon ongoing R&D efforts at these companies. The DOE is fine with this since the commercialization of these technologies is really the only way these government agencies can be assured of cost-effective exascale machines. The FastForward statement of work makes a point of spelling out this arrangement, thusly: “While DOE’s extreme-scale computer requirements are a driving factor, these projects must also exhibit the potential for technology adoption by broader segments of the market outside of DOE supercomputer installations.”

For example, Intel’s FastForward processor work will be based on the company’s MIC (Many Integrated Core) architecture, which the company is initially aiming at the supercomputing market, but with the intent to extend it into big data business applications and beyond. The first MIC product, under the Xeon Phi brand, is scheduled to be launched before the end of 2012, but this initial offering is at least a couple of generations away from supporting exascale-capable machines. According to Seager, a future processor of this kind will need much improved energy efficiency, a revamped memory interface, and higher resiliency.

Although the x86 ISA will be retained, this future MIC architecture will incorporate some “radical approaches” to bring the technology into the exascale realm. To begin with, says Seager, that means reducing its power draw two to three times greater than what would naturally be achieved with transistor shrinkage over the rest of the decade. “It’s a daunting challenge to do better than what Moore’s Law will give you,” Seager told HPCwire.

Fortunately, he says, Intel will be able to leverage its near-threshold voltage circuitry research, some of which was funded under UHPC (Ubiquitous High Performance Computing), DARPA’s now defunct exascale program. Shekhar Borkar, who was the PI for the UHPC work, along with Seager and former IBM’er Al Gara, will be heading up the FastForward work at Intel.

For the exascale memory subcontract, Intel will be leveraging its work with Micron Technology on the Hybrid Memory Cube. The idea is to use similar technology to incorporate 3D stacks of memory chips into the same package as the processor. In-package integration shortens the distance considerably between the processor and the memory, which significantly increases bandwidth and lowers latency. At the same time, cache management is going to be redesigned to optimize the power-performance of memory reads and writes.

Like Intel, AMD will be basing its FastForward processor research on a current design, in this case the company’s APU (Accelerated Processing Unit) product line and the related Heterogeneous Systems Architecture (HSA) standard — that according to Alan Lee, AMD’s corporate vice president for Advanced Research and Development. The current crop of APUs, which integrate CPUs and GPUs on-chip, are aimed at consumer devices, such as laptops, netbooks, and other mobile gear. But AMD has designs on extending its heterogeneous portfolio into the server arena, and the DOE just gave them about 12 million more reasons to do so.

Since AMD first needs to transform their APU into a server design, the chipmaker has a somewhat different, and perhaps longer path to exascale than Intel, which is at least starting with server-ready silicon. On the other hand the MIC architecture is not heterogenous (and may never be), so AMD does have a certain advantage there. “That is the truly unique technology and the strongest one that AMD brings to bear — that we have a world-class CPU and GPU brought together in a single APU,” says Lee.

Lee was less forthcoming about the starting point for the memory research under the FastForward work, other than to say it would be optimizing the technology around its heterogeneous architecture and would involve high-speed interconnects as well as different types and arrangements of memory.

More than anything, Lee sees this R&D work as producing dividends in other areas of AMD’s business. He says the fundamental technologies that the DOE wants for exascale are those the computer industry needs, not just in the future, but right now, referring to the big data domain, in particular. “I expect that a lot of the technology that you see us develop has the potential to make it into a variety of different server products of different genres,” says Lee.

To counterbalance the Intel and AMD work, is NVIDIA, which will be using the company’s Echelon design as the starting point for its FastForward work. Echelon, which was also funded under DARPA’s UHPC program, is based on a future 20-teraflop microprocessor that integrates 128 streaming processors, 8 latency (CPU-type) processors, and 256MB of SRAM memory on-chip. The technology is in line to follow Maxwell, NVIDIA’s GPU architecture scheduled to take the reigns from Kepler in a couple of years. Unlike the Intel and AMD efforts, NVIDIA’s contract is for processor technology only, although the Echelon design also specified an exascale-capable memory subsystem.

While the DOE spread its bets around for the FastForward processor- and memory-based research, there was only one storage subcontract awarded. That went to Whamcloud, who in conjunction with EMC, Cray and HDF Group, got the nod to provide the R&D work for storage and I/O.

The work specifies bringing object storage into the exascale realm, and will be based on the Lustre parallel file system technology. As a result, any development in this area will be open sourced and be available to the Lustre community.

Although the FastForward contracts limit their scope to specific exascale components, rather than complete systems, the research won’t be performed in a complete vacuum. The vendors are expected to work in conjunction with the DOE’s exascale co-design centers, a group that encapsulates various proxy applications, algorithms, and programming models important to the agency. The idea is to align the vendor R&D designs with the DOE’s application needs and expectations, the implication being that these are general enough to apply to a wide range of exascale codes both inside and outside the Energy Department.

All the FastForward contracts have a two-year lifetime, so are slated to expire in 2014. The follow-on DOE work to design and build entire exascale supercomputers are dependent on future budgets. Assuming the feds comes through with the funding, that effort is expected to cost hundreds of millions of dollars over the next several years.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify e Read more…

By Rob Farber

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

HPE Extreme Performance Solutions

Achieve Optimal Performance at Scale with High Performance Fabrics for HPC

High Performance Computing (HPC) is unlocking a new era of speed and productivity to fuel business transformation. Rapid advancements in HPC capabilities are helping organizations operate faster and more effectively than ever, but in today’s fast-paced marketplace, a new generation of technologies is required to reach greater scalability and cost-efficiency. Read more…

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The m Read more…

By Chris Downing

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This