DOE Primes Pump for Exascale Supercomputers

By Michael Feldman

July 12, 2012

Intel, AMD, NVIDIA, and Whamcloud have been awarded tens of millions of dollars by the US Department of Energy (DOE) to kick-start research and development required to build exascale supercomputers. The work will be performed under the FastForward program, a joint effort run by the DOE Office of Science and the National Nuclear Security Administration (NNSA) that will focus on developing future hardware and software technologies capable of supporting such machines.

The program is being contracted through Lawrence Livermore National Security, LLC as part of a multi-lab consortium that includes Argonne National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories.

Although we’re only six to eight years away from the first exaflops systems, the DOE’s primary exascale program has yet to be funded. (And since this is an election year in the US, such funding will probably not fall into place until 2013.) In the interim, FastForward was devised in order to begin the needed R&D for some of the exascale foundational technologies, in particular, processors, memory and storage.

At least some of the impetus for the program came from the vendors themselves. According to Mark Seager, Intel’s CTO for the company’s High Performance Computing Ecosystem group, the DOE was told by multiple commercial partners that research for the component pieces needed to get underway this year if they hoped to field an exascale machine by 2020. That led to the formation of the program, and apparently there was enough loose change rolling around at the Office of Science and NNSA to fund this more modest effort.

Although all the FastForward subcontracts have yet to be made public, as of today there are four known awards:

  • Intel: $19 million for both processor and memory technologies
  • AMD: $12.6 million for processor and memory technologies
  • NVIDIA: $12 million for processor technology
  • Whamcloud (along with EMC, Cray and HDF Group): Unknown dollar amount for storage and I/O technologies

Although the work is not intended to fund the development of “near-term capabilities” that are already on vendors’ existing product roadmaps, all of this work will be based upon ongoing R&D efforts at these companies. The DOE is fine with this since the commercialization of these technologies is really the only way these government agencies can be assured of cost-effective exascale machines. The FastForward statement of work makes a point of spelling out this arrangement, thusly: “While DOE’s extreme-scale computer requirements are a driving factor, these projects must also exhibit the potential for technology adoption by broader segments of the market outside of DOE supercomputer installations.”

For example, Intel’s FastForward processor work will be based on the company’s MIC (Many Integrated Core) architecture, which the company is initially aiming at the supercomputing market, but with the intent to extend it into big data business applications and beyond. The first MIC product, under the Xeon Phi brand, is scheduled to be launched before the end of 2012, but this initial offering is at least a couple of generations away from supporting exascale-capable machines. According to Seager, a future processor of this kind will need much improved energy efficiency, a revamped memory interface, and higher resiliency.

Although the x86 ISA will be retained, this future MIC architecture will incorporate some “radical approaches” to bring the technology into the exascale realm. To begin with, says Seager, that means reducing its power draw two to three times greater than what would naturally be achieved with transistor shrinkage over the rest of the decade. “It’s a daunting challenge to do better than what Moore’s Law will give you,” Seager told HPCwire.

Fortunately, he says, Intel will be able to leverage its near-threshold voltage circuitry research, some of which was funded under UHPC (Ubiquitous High Performance Computing), DARPA’s now defunct exascale program. Shekhar Borkar, who was the PI for the UHPC work, along with Seager and former IBM’er Al Gara, will be heading up the FastForward work at Intel.

For the exascale memory subcontract, Intel will be leveraging its work with Micron Technology on the Hybrid Memory Cube. The idea is to use similar technology to incorporate 3D stacks of memory chips into the same package as the processor. In-package integration shortens the distance considerably between the processor and the memory, which significantly increases bandwidth and lowers latency. At the same time, cache management is going to be redesigned to optimize the power-performance of memory reads and writes.

Like Intel, AMD will be basing its FastForward processor research on a current design, in this case the company’s APU (Accelerated Processing Unit) product line and the related Heterogeneous Systems Architecture (HSA) standard — that according to Alan Lee, AMD’s corporate vice president for Advanced Research and Development. The current crop of APUs, which integrate CPUs and GPUs on-chip, are aimed at consumer devices, such as laptops, netbooks, and other mobile gear. But AMD has designs on extending its heterogeneous portfolio into the server arena, and the DOE just gave them about 12 million more reasons to do so.

Since AMD first needs to transform their APU into a server design, the chipmaker has a somewhat different, and perhaps longer path to exascale than Intel, which is at least starting with server-ready silicon. On the other hand the MIC architecture is not heterogenous (and may never be), so AMD does have a certain advantage there. “That is the truly unique technology and the strongest one that AMD brings to bear — that we have a world-class CPU and GPU brought together in a single APU,” says Lee.

Lee was less forthcoming about the starting point for the memory research under the FastForward work, other than to say it would be optimizing the technology around its heterogeneous architecture and would involve high-speed interconnects as well as different types and arrangements of memory.

More than anything, Lee sees this R&D work as producing dividends in other areas of AMD’s business. He says the fundamental technologies that the DOE wants for exascale are those the computer industry needs, not just in the future, but right now, referring to the big data domain, in particular. “I expect that a lot of the technology that you see us develop has the potential to make it into a variety of different server products of different genres,” says Lee.

To counterbalance the Intel and AMD work, is NVIDIA, which will be using the company’s Echelon design as the starting point for its FastForward work. Echelon, which was also funded under DARPA’s UHPC program, is based on a future 20-teraflop microprocessor that integrates 128 streaming processors, 8 latency (CPU-type) processors, and 256MB of SRAM memory on-chip. The technology is in line to follow Maxwell, NVIDIA’s GPU architecture scheduled to take the reigns from Kepler in a couple of years. Unlike the Intel and AMD efforts, NVIDIA’s contract is for processor technology only, although the Echelon design also specified an exascale-capable memory subsystem.

While the DOE spread its bets around for the FastForward processor- and memory-based research, there was only one storage subcontract awarded. That went to Whamcloud, who in conjunction with EMC, Cray and HDF Group, got the nod to provide the R&D work for storage and I/O.

The work specifies bringing object storage into the exascale realm, and will be based on the Lustre parallel file system technology. As a result, any development in this area will be open sourced and be available to the Lustre community.

Although the FastForward contracts limit their scope to specific exascale components, rather than complete systems, the research won’t be performed in a complete vacuum. The vendors are expected to work in conjunction with the DOE’s exascale co-design centers, a group that encapsulates various proxy applications, algorithms, and programming models important to the agency. The idea is to align the vendor R&D designs with the DOE’s application needs and expectations, the implication being that these are general enough to apply to a wide range of exascale codes both inside and outside the Energy Department.

All the FastForward contracts have a two-year lifetime, so are slated to expire in 2014. The follow-on DOE work to design and build entire exascale supercomputers are dependent on future budgets. Assuming the feds comes through with the funding, that effort is expected to cost hundreds of millions of dollars over the next several years.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This