DOE Primes Pump for Exascale Supercomputers

By Michael Feldman

July 12, 2012

Intel, AMD, NVIDIA, and Whamcloud have been awarded tens of millions of dollars by the US Department of Energy (DOE) to kick-start research and development required to build exascale supercomputers. The work will be performed under the FastForward program, a joint effort run by the DOE Office of Science and the National Nuclear Security Administration (NNSA) that will focus on developing future hardware and software technologies capable of supporting such machines.

The program is being contracted through Lawrence Livermore National Security, LLC as part of a multi-lab consortium that includes Argonne National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories.

Although we’re only six to eight years away from the first exaflops systems, the DOE’s primary exascale program has yet to be funded. (And since this is an election year in the US, such funding will probably not fall into place until 2013.) In the interim, FastForward was devised in order to begin the needed R&D for some of the exascale foundational technologies, in particular, processors, memory and storage.

At least some of the impetus for the program came from the vendors themselves. According to Mark Seager, Intel’s CTO for the company’s High Performance Computing Ecosystem group, the DOE was told by multiple commercial partners that research for the component pieces needed to get underway this year if they hoped to field an exascale machine by 2020. That led to the formation of the program, and apparently there was enough loose change rolling around at the Office of Science and NNSA to fund this more modest effort.

Although all the FastForward subcontracts have yet to be made public, as of today there are four known awards:

  • Intel: $19 million for both processor and memory technologies
  • AMD: $12.6 million for processor and memory technologies
  • NVIDIA: $12 million for processor technology
  • Whamcloud (along with EMC, Cray and HDF Group): Unknown dollar amount for storage and I/O technologies

Although the work is not intended to fund the development of “near-term capabilities” that are already on vendors’ existing product roadmaps, all of this work will be based upon ongoing R&D efforts at these companies. The DOE is fine with this since the commercialization of these technologies is really the only way these government agencies can be assured of cost-effective exascale machines. The FastForward statement of work makes a point of spelling out this arrangement, thusly: “While DOE’s extreme-scale computer requirements are a driving factor, these projects must also exhibit the potential for technology adoption by broader segments of the market outside of DOE supercomputer installations.”

For example, Intel’s FastForward processor work will be based on the company’s MIC (Many Integrated Core) architecture, which the company is initially aiming at the supercomputing market, but with the intent to extend it into big data business applications and beyond. The first MIC product, under the Xeon Phi brand, is scheduled to be launched before the end of 2012, but this initial offering is at least a couple of generations away from supporting exascale-capable machines. According to Seager, a future processor of this kind will need much improved energy efficiency, a revamped memory interface, and higher resiliency.

Although the x86 ISA will be retained, this future MIC architecture will incorporate some “radical approaches” to bring the technology into the exascale realm. To begin with, says Seager, that means reducing its power draw two to three times greater than what would naturally be achieved with transistor shrinkage over the rest of the decade. “It’s a daunting challenge to do better than what Moore’s Law will give you,” Seager told HPCwire.

Fortunately, he says, Intel will be able to leverage its near-threshold voltage circuitry research, some of which was funded under UHPC (Ubiquitous High Performance Computing), DARPA’s now defunct exascale program. Shekhar Borkar, who was the PI for the UHPC work, along with Seager and former IBM’er Al Gara, will be heading up the FastForward work at Intel.

For the exascale memory subcontract, Intel will be leveraging its work with Micron Technology on the Hybrid Memory Cube. The idea is to use similar technology to incorporate 3D stacks of memory chips into the same package as the processor. In-package integration shortens the distance considerably between the processor and the memory, which significantly increases bandwidth and lowers latency. At the same time, cache management is going to be redesigned to optimize the power-performance of memory reads and writes.

Like Intel, AMD will be basing its FastForward processor research on a current design, in this case the company’s APU (Accelerated Processing Unit) product line and the related Heterogeneous Systems Architecture (HSA) standard — that according to Alan Lee, AMD’s corporate vice president for Advanced Research and Development. The current crop of APUs, which integrate CPUs and GPUs on-chip, are aimed at consumer devices, such as laptops, netbooks, and other mobile gear. But AMD has designs on extending its heterogeneous portfolio into the server arena, and the DOE just gave them about 12 million more reasons to do so.

Since AMD first needs to transform their APU into a server design, the chipmaker has a somewhat different, and perhaps longer path to exascale than Intel, which is at least starting with server-ready silicon. On the other hand the MIC architecture is not heterogenous (and may never be), so AMD does have a certain advantage there. “That is the truly unique technology and the strongest one that AMD brings to bear — that we have a world-class CPU and GPU brought together in a single APU,” says Lee.

Lee was less forthcoming about the starting point for the memory research under the FastForward work, other than to say it would be optimizing the technology around its heterogeneous architecture and would involve high-speed interconnects as well as different types and arrangements of memory.

More than anything, Lee sees this R&D work as producing dividends in other areas of AMD’s business. He says the fundamental technologies that the DOE wants for exascale are those the computer industry needs, not just in the future, but right now, referring to the big data domain, in particular. “I expect that a lot of the technology that you see us develop has the potential to make it into a variety of different server products of different genres,” says Lee.

To counterbalance the Intel and AMD work, is NVIDIA, which will be using the company’s Echelon design as the starting point for its FastForward work. Echelon, which was also funded under DARPA’s UHPC program, is based on a future 20-teraflop microprocessor that integrates 128 streaming processors, 8 latency (CPU-type) processors, and 256MB of SRAM memory on-chip. The technology is in line to follow Maxwell, NVIDIA’s GPU architecture scheduled to take the reigns from Kepler in a couple of years. Unlike the Intel and AMD efforts, NVIDIA’s contract is for processor technology only, although the Echelon design also specified an exascale-capable memory subsystem.

While the DOE spread its bets around for the FastForward processor- and memory-based research, there was only one storage subcontract awarded. That went to Whamcloud, who in conjunction with EMC, Cray and HDF Group, got the nod to provide the R&D work for storage and I/O.

The work specifies bringing object storage into the exascale realm, and will be based on the Lustre parallel file system technology. As a result, any development in this area will be open sourced and be available to the Lustre community.

Although the FastForward contracts limit their scope to specific exascale components, rather than complete systems, the research won’t be performed in a complete vacuum. The vendors are expected to work in conjunction with the DOE’s exascale co-design centers, a group that encapsulates various proxy applications, algorithms, and programming models important to the agency. The idea is to align the vendor R&D designs with the DOE’s application needs and expectations, the implication being that these are general enough to apply to a wide range of exascale codes both inside and outside the Energy Department.

All the FastForward contracts have a two-year lifetime, so are slated to expire in 2014. The follow-on DOE work to design and build entire exascale supercomputers are dependent on future budgets. Assuming the feds comes through with the funding, that effort is expected to cost hundreds of millions of dollars over the next several years.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

FPGA-Based Genome Processor Bundles Storage

January 6, 2017

Bio-processor developer Edico Genome is collaborating with storage specialist Dell EMC to bundle computing and storage for analyzing gene-sequencing data. Read more…

By George Leopold

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Deep Learning Paves Way for Better Diagnostics

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This