Helix Nebula: from Grid to Cloud and Lessons Learned So Far

By Tiffany Trader

July 17, 2012

European cloud computing is taking off as can be seen in the progress of Helix Nebula – the Science Cloud, a collaboration between select service providers and three of Europe’s most prominent research centers, CERN, the European Space Agency (ESA), and the European Molecular Biology Laboratory (EMBL). The Helix Nebula project announced last week that they were on the verge of moving from the initial proof of concept phase to the start of the two-year pilot phase, which involves expanded proofs of concepts and perhaps some additional demand side partners.

Helix NebulaThe three flagship applications (one from each research institution) have been deployed to cloud resources provided by Atos, CloudSigma and T-Systems.

Michael Higgins, Chief Enterprise Solutions Officer at CloudSigma, makes the point that CERN and the other research institutions are not really customers, not yet at least. Currently, they are all partners exploring the feasibility of migrating workloads from the grid to the cloud. Higgins further explains that Helix Nebula brings together two sets of consortia, the demand side and the supply side, which is comprised of both public and private cloud providers.

In the initial proof-of-concept phase, commercial terms are not imposed by the cloud providers on a pay-per-use basis, but instead involve agreed-upon bulk-payment monetary contribution from each of the demand side participants, based on each vendor’s ability to deliver the proofs of concept.

CERN and the Worldwide LHC Computing Grid

Project participant CERN generates a huge amount of data on its Large Hadron Collider. The LHC generally produces about 15 petabytes (15 million gigabytes) of data annually, but this year, they’re on track to reach 30 petabytes as the search for the Higgs boson particle has picked up steam. To analyze all this data, research partners from around the world rely on the Worldwide LHC Computing Grid (WLCG), a global grid network of more than 150 computing centers.

When asked what role if any Helix Nebula played in the preliminary Higgs boson discovery, the response from WLCG Project Leader Ian Bird was a qualified none:

“We did succeed in running some simulation work in production, and I dare say some of that resulting simulation was used in the analysis of the data that led to the announcement last week, but this was a very tiny fraction compared to the huge amount of data that had to be processed.”

Helix Nebula has gone from its initial stages of technology review to the point now where CloudSigma has completed all three proofs of concept for the flagship workloads. Based on that success, they’re now moving toward the next phase, which is to expand the proofs of concept and to begin to refine the commercial terms.

“They’re not only expanding the original proofs of concept, but opening the door to more demand-side flagship projects. Up to now, the researchers have not been overly pressed to understand TCO – total cost of ownership – so this may be something they’re struggling with,” suggests Higgins. “Like at CERN, IT doesn’t pay for electricity, so they would not know how much to factor in for their in-house server electricity costs.”

Higgins makes the case that cloud bursting is more suitable for science than grid or on-premise systems because very little science occurs 24/7, around the clock. There are times when ATLAS is not generating data and other times when there is an backlog of work. Oversubscription and underutilization are often the norm with designated resources, but bursting allows researchers to use only the resources they need when they need it.

Institutions are facing funding issues, explains Higgins, which means there is less hardware to evergreen or purchase new. Every day there is more compute demand, and the resources are strained. They have to look to the cloud for cost-savings or they have to find new sources of capital investment. Running workloads in the cloud on a pay-per-use basis erases the problem of buying a $10,000 platform and running it two weeks out of four.

While these arguments make sense, applying virtualization and cloud technologies to current grid resources is another avenue for boosting utilization rates and creating elasticity and scalability, and CERN is exploring these options in addition to the public cloud. Still, Bird notes that simply having a private cloud won’t work either, because the research depends on a federated connected cloud.

Grid Versus Cloud

Asked what will happen to the Worldwide LHC grid as cloud ramps up, Bird says that it will remain. He uses the opportunity to discuss current grid developments. They are running virtual machines on some of the sites, and they are in the process of deploying OpenStack. These projects are designed to improve their internal efficiency as well as the way they run services and provide services, and will also give them additional opportunities to interact with cloud sites.

Bird points to an important distinction between grid and cloud which is one of federation. Grid, despite being a networked collection of distributed computing systems, has evolved to become a highly-unified computing resource. Whereas using multiple cloud providers essentially means you have a collection of disparate resources that are difficult to integrate, even when they’re working together as with Helix Nebula. In addition to the API headaches, there are a myriad of standards and integration pain points to contend with, he says, elaborating further on the grid/cloud dichotomy:

The reason why we used the grid in the first place is because the computing resources that we have access to which are provided by the science funding agencies are physically distributed around the world and we have to have a way of putting these together, so that we did with grid technologies. So for us, the grid is a way of sharing resources and collaborating, while the cloud isn’t really that, it’s more to do with economies of scale. It’s distributed in the way it’s remote from you, but it’s really a different concept. One of the interesting things is how much of that [cloud] technology can we use to improve the way we run our own computer centers simply by not having to support grid infrastructure, but switching that to some cloud technology and how much can we do by buying resources from commercial resources?

As for comparisons between the grid I/O problem versus the cloud I/O problem, Bird observes that while these are similar, this is an area that has received a lot of investment on the grid side. Over the years, the partner institutions have developed dedicated optical private networks between the servers and their large compute centers and they also make significant use of specialized academic networks. When asked if he sees similar developments happening in cloud, Bird is doubtful they’ll happen in the near term, and points to another question for Helix Nebula, which is what is the connectivity of these partners and can we reach them over the academic networks? He says these are among the types of issues they want to pin down in the next couple of years.

On the positive side, Bird notes that networking has changed a lot since the deployment of grid. Prices have come down and data management techniques have become more effective. These developments will be applied to the Helix Nebula project.

Regarding the more specific process of transferring workloads from the grid to the cloud, CloudSigma’s Higgins explains that some of them ported over without too much work, while others have required more extensive retooling due to the numerous changes in the software design practices and machine architectures since these applications were first written. As an illustration, many of the apps in use today were written prior to JAVA and NoSQL databases.

Bird has a somewhat different take on the nitty-gritty details of the cloud migration, saying that they did not need to change the code at all. He explains that the LHC codes fall into the “high-throughput computing” model, where the different pieces of the running code do not need to communicate with each other. The grid resource and cloud resource are basically the same, he notes, i.e., a big cluster of Linux machines. The main difference is how you access this resource and how you move data in and out, however “at the level of real-code running on the machine, it’s the same,” he says.

A Cloud is Not a Cloud

From Bird’s point of view, CERN saw the successful completion of its three proofs of concept. The process entailed running the same simulation workload with the three different cloud providers. The conclusion Bird draws from this, is that while successful, “a cloud is not a cloud is not a cloud.” You cannot just write-once, run-anywhere; there are integration headaches.

According to the grid expert, they absolutely will need an adapter layer that knows how to talk to the different providers. This is essential if they want to use these resources in a dynamic way that involves moving between cloud providers. When asked about a possible performance penalty, he responds that since this is mainly a way to get data into the cloud, any overhead would be likely be negligible. He adds these so-called cloud broker solutions already exist in the open source domain; Deltacloud and libcloud are examples. While this layer adds complexity and could even introduce faults, it’s unavoidable at this stage of the game if you value transparency and interoperability.

Up until now, CERN has been running cloud-friendly workloads with little network I/O dependency. When asked about the HPC cloud bandwidth issue, i.e., the limitations of getting data in and out of the cloud, Bird said this absolutely could be a problem. Their normal data processing workloads involve transferring petabytes of data. During the two-year pilot phase, they will address several issues related to data movement: whether they can move data in and out of the cloud at this scale, whether they can afford to do this, and possible policy issues involved with moving academic data into the commercial domain.

Bird returns to the bottom line, which is cost: “Can we afford to move data in and out and can we afford to store data in the cloud?” he asks.

“There are many different use cases. I think we can overcome the technical issues; the most interesting question is what’s the real cost of doing this and how does it compare with the infrastructure that we have currently?”

Bird gives the impression that while cloud migration has potential, it’s not a “sure thing” and by no means a panacea. How do you get a collection of cloud providers to behave as a federated resource? The first steps involve supplementing the existing grid resources with a few cloud providers, says Bird, which allows those involved to begin the process of learning how to integrate the various pieces.

New Science

CloudSigma’s Higgins is most excited about the new science that can be enabled by the cloud as more and more science databases are migrated over. Right now, there are three databases that do not combine to support any practical implications, but the possibilities for meta-analysis are intriguing. For example, with ESA’s earth observation data stored in the cloud, a researcher could ask the World Health Organization for the mosquito outbreak data. This would create a platform where both databases would be available, allowing scientists to expand their research horizons.

This kind of integration requires a lot of work because each database has its own schema. Right now CloudSigma is working on an initiative that is attempting to create master schemas. For example, the earth observation data is linked to latitude and longitude, whereas the mosquito outbreak data is based on distance from a known point on a compass bearing. So the question then is how to marry these distinct data points. The new effort is hammering out a global schema which can make sense of these disparate units so that it becomes a useful tool for researchers. At that point, a scientist could answer queries such as “six miles north of Nairobi, how wet is it and how many mosquitos are we expecting to break out?”

Higgins is confident that creating a rich ecosystem of multiple scientific databases will draw new researchers to the cloud.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This