Helix Nebula: from Grid to Cloud and Lessons Learned So Far

By Tiffany Trader

July 17, 2012

European cloud computing is taking off as can be seen in the progress of Helix Nebula – the Science Cloud, a collaboration between select service providers and three of Europe’s most prominent research centers, CERN, the European Space Agency (ESA), and the European Molecular Biology Laboratory (EMBL). The Helix Nebula project announced last week that they were on the verge of moving from the initial proof of concept phase to the start of the two-year pilot phase, which involves expanded proofs of concepts and perhaps some additional demand side partners.

Helix NebulaThe three flagship applications (one from each research institution) have been deployed to cloud resources provided by Atos, CloudSigma and T-Systems.

Michael Higgins, Chief Enterprise Solutions Officer at CloudSigma, makes the point that CERN and the other research institutions are not really customers, not yet at least. Currently, they are all partners exploring the feasibility of migrating workloads from the grid to the cloud. Higgins further explains that Helix Nebula brings together two sets of consortia, the demand side and the supply side, which is comprised of both public and private cloud providers.

In the initial proof-of-concept phase, commercial terms are not imposed by the cloud providers on a pay-per-use basis, but instead involve agreed-upon bulk-payment monetary contribution from each of the demand side participants, based on each vendor’s ability to deliver the proofs of concept.

CERN and the Worldwide LHC Computing Grid

Project participant CERN generates a huge amount of data on its Large Hadron Collider. The LHC generally produces about 15 petabytes (15 million gigabytes) of data annually, but this year, they’re on track to reach 30 petabytes as the search for the Higgs boson particle has picked up steam. To analyze all this data, research partners from around the world rely on the Worldwide LHC Computing Grid (WLCG), a global grid network of more than 150 computing centers.

When asked what role if any Helix Nebula played in the preliminary Higgs boson discovery, the response from WLCG Project Leader Ian Bird was a qualified none:

“We did succeed in running some simulation work in production, and I dare say some of that resulting simulation was used in the analysis of the data that led to the announcement last week, but this was a very tiny fraction compared to the huge amount of data that had to be processed.”

Helix Nebula has gone from its initial stages of technology review to the point now where CloudSigma has completed all three proofs of concept for the flagship workloads. Based on that success, they’re now moving toward the next phase, which is to expand the proofs of concept and to begin to refine the commercial terms.

“They’re not only expanding the original proofs of concept, but opening the door to more demand-side flagship projects. Up to now, the researchers have not been overly pressed to understand TCO – total cost of ownership – so this may be something they’re struggling with,” suggests Higgins. “Like at CERN, IT doesn’t pay for electricity, so they would not know how much to factor in for their in-house server electricity costs.”

Higgins makes the case that cloud bursting is more suitable for science than grid or on-premise systems because very little science occurs 24/7, around the clock. There are times when ATLAS is not generating data and other times when there is an backlog of work. Oversubscription and underutilization are often the norm with designated resources, but bursting allows researchers to use only the resources they need when they need it.

Institutions are facing funding issues, explains Higgins, which means there is less hardware to evergreen or purchase new. Every day there is more compute demand, and the resources are strained. They have to look to the cloud for cost-savings or they have to find new sources of capital investment. Running workloads in the cloud on a pay-per-use basis erases the problem of buying a $10,000 platform and running it two weeks out of four.

While these arguments make sense, applying virtualization and cloud technologies to current grid resources is another avenue for boosting utilization rates and creating elasticity and scalability, and CERN is exploring these options in addition to the public cloud. Still, Bird notes that simply having a private cloud won’t work either, because the research depends on a federated connected cloud.

Grid Versus Cloud

Asked what will happen to the Worldwide LHC grid as cloud ramps up, Bird says that it will remain. He uses the opportunity to discuss current grid developments. They are running virtual machines on some of the sites, and they are in the process of deploying OpenStack. These projects are designed to improve their internal efficiency as well as the way they run services and provide services, and will also give them additional opportunities to interact with cloud sites.

Bird points to an important distinction between grid and cloud which is one of federation. Grid, despite being a networked collection of distributed computing systems, has evolved to become a highly-unified computing resource. Whereas using multiple cloud providers essentially means you have a collection of disparate resources that are difficult to integrate, even when they’re working together as with Helix Nebula. In addition to the API headaches, there are a myriad of standards and integration pain points to contend with, he says, elaborating further on the grid/cloud dichotomy:

The reason why we used the grid in the first place is because the computing resources that we have access to which are provided by the science funding agencies are physically distributed around the world and we have to have a way of putting these together, so that we did with grid technologies. So for us, the grid is a way of sharing resources and collaborating, while the cloud isn’t really that, it’s more to do with economies of scale. It’s distributed in the way it’s remote from you, but it’s really a different concept. One of the interesting things is how much of that [cloud] technology can we use to improve the way we run our own computer centers simply by not having to support grid infrastructure, but switching that to some cloud technology and how much can we do by buying resources from commercial resources?

As for comparisons between the grid I/O problem versus the cloud I/O problem, Bird observes that while these are similar, this is an area that has received a lot of investment on the grid side. Over the years, the partner institutions have developed dedicated optical private networks between the servers and their large compute centers and they also make significant use of specialized academic networks. When asked if he sees similar developments happening in cloud, Bird is doubtful they’ll happen in the near term, and points to another question for Helix Nebula, which is what is the connectivity of these partners and can we reach them over the academic networks? He says these are among the types of issues they want to pin down in the next couple of years.

On the positive side, Bird notes that networking has changed a lot since the deployment of grid. Prices have come down and data management techniques have become more effective. These developments will be applied to the Helix Nebula project.

Regarding the more specific process of transferring workloads from the grid to the cloud, CloudSigma’s Higgins explains that some of them ported over without too much work, while others have required more extensive retooling due to the numerous changes in the software design practices and machine architectures since these applications were first written. As an illustration, many of the apps in use today were written prior to JAVA and NoSQL databases.

Bird has a somewhat different take on the nitty-gritty details of the cloud migration, saying that they did not need to change the code at all. He explains that the LHC codes fall into the “high-throughput computing” model, where the different pieces of the running code do not need to communicate with each other. The grid resource and cloud resource are basically the same, he notes, i.e., a big cluster of Linux machines. The main difference is how you access this resource and how you move data in and out, however “at the level of real-code running on the machine, it’s the same,” he says.

A Cloud is Not a Cloud

From Bird’s point of view, CERN saw the successful completion of its three proofs of concept. The process entailed running the same simulation workload with the three different cloud providers. The conclusion Bird draws from this, is that while successful, “a cloud is not a cloud is not a cloud.” You cannot just write-once, run-anywhere; there are integration headaches.

According to the grid expert, they absolutely will need an adapter layer that knows how to talk to the different providers. This is essential if they want to use these resources in a dynamic way that involves moving between cloud providers. When asked about a possible performance penalty, he responds that since this is mainly a way to get data into the cloud, any overhead would be likely be negligible. He adds these so-called cloud broker solutions already exist in the open source domain; Deltacloud and libcloud are examples. While this layer adds complexity and could even introduce faults, it’s unavoidable at this stage of the game if you value transparency and interoperability.

Up until now, CERN has been running cloud-friendly workloads with little network I/O dependency. When asked about the HPC cloud bandwidth issue, i.e., the limitations of getting data in and out of the cloud, Bird said this absolutely could be a problem. Their normal data processing workloads involve transferring petabytes of data. During the two-year pilot phase, they will address several issues related to data movement: whether they can move data in and out of the cloud at this scale, whether they can afford to do this, and possible policy issues involved with moving academic data into the commercial domain.

Bird returns to the bottom line, which is cost: “Can we afford to move data in and out and can we afford to store data in the cloud?” he asks.

“There are many different use cases. I think we can overcome the technical issues; the most interesting question is what’s the real cost of doing this and how does it compare with the infrastructure that we have currently?”

Bird gives the impression that while cloud migration has potential, it’s not a “sure thing” and by no means a panacea. How do you get a collection of cloud providers to behave as a federated resource? The first steps involve supplementing the existing grid resources with a few cloud providers, says Bird, which allows those involved to begin the process of learning how to integrate the various pieces.

New Science

CloudSigma’s Higgins is most excited about the new science that can be enabled by the cloud as more and more science databases are migrated over. Right now, there are three databases that do not combine to support any practical implications, but the possibilities for meta-analysis are intriguing. For example, with ESA’s earth observation data stored in the cloud, a researcher could ask the World Health Organization for the mosquito outbreak data. This would create a platform where both databases would be available, allowing scientists to expand their research horizons.

This kind of integration requires a lot of work because each database has its own schema. Right now CloudSigma is working on an initiative that is attempting to create master schemas. For example, the earth observation data is linked to latitude and longitude, whereas the mosquito outbreak data is based on distance from a known point on a compass bearing. So the question then is how to marry these distinct data points. The new effort is hammering out a global schema which can make sense of these disparate units so that it becomes a useful tool for researchers. At that point, a scientist could answer queries such as “six miles north of Nairobi, how wet is it and how many mosquitos are we expecting to break out?”

Higgins is confident that creating a rich ecosystem of multiple scientific databases will draw new researchers to the cloud.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This