Researchers Squeeze GPU Performance from 11 Big Science Apps

By Michael Feldman

July 18, 2012

The GPGPU faithful received another round of encouraging news this week. In a report  published this week, researchers documented that GPU-equipped supercomputers enabled application speedups between 1.4x and 6.1x across a range of well-known science codes. While those results aren’t the order of magnitude performance increases that were being bandied about in the early days of GPU computing, the researchers were encouraged that the technology is producing consistently good results with some of the most popular HPC science applications in the world.

The work was presented in March at the Accelerating Computational Science Symposium, an event devoted to understanding the use of hybrid supercomputers for scientific research. The ensuing report published by the Oak Ridge Leadership Computing Facility, detailed the performance GPU acceleration across the science application spectrum — biology, chemical physics, combustion, nuclear fission and fusion, material science, seismology, molecular dynamics, and climatology.

The 11 simulation codes tested –  S3D, Denovo, LAMMPS, WL-LSMS, CAM-SE, NAMD, Chroma, QMCPACK, SPECFEM-3D, GTC, and CP2K — are used by tens of thousands of researchers worldwide. NAMD alone has over 50 thousand users.

It should be noted that all of the principle participants at the symposium, including Oak Ridge National Laboratory (ORNL), the National Center for Supercomputing Applications (NCSA) and the Swiss National Supercomputing Center (CSCS), not to mention symposium sponsors Cray and NVIDIA, have a stake in proving the viability of GPU-accelerated supercomputing. The three supercomputing centers recently made substantial investments in GPU-based HPC, ORNL with its upcoming 20-plus-petaflop Titan system, NCSA with the 10-petaflop Blue Waters supercomputer, and CSCS with its currently installed 176-node Todi machine.

Titan, Blue Waters and Todi are all Cray supercomputers with varying amounts of AMD Opteron and NVIDIA Tesla horsepower, although none with greater than a 1:1 GPU-to-CPU ratio. That assumes a certain balance in the application between the sequential pieces of the code that would best be run on the CPU and the parallel components that would be candidates for the GPU. But applications can have very different needs in this regard, so that hardware ratio may not always be optimal. Vendors such as HP, Dell, Appro and others offer systems with much higher ratios of GPU to CPUs.

To level the playing field as much as possible, the performance runs for the science apps were made on CSCS’s Monte Rosa, a Cray XE6 machine equipped with two AMD “Interlagos” (Opteron 6200) CPUs per node, and TitanDev, a XK6 Titan-based testbed that consists of hybrid nodes, each of which contain one NVIDIA Fermi GPU and one Interlagos CPU . So in essence, the applications were tested on the same two systems, one of which replaced the second CPU with a GPU in each node. Here are the results:

Application

Performance

XK6 vs XE6

Software Framework

S3D

Turbulent combustion

1.4 OpenACC

NAMD

Molecular dynamics

1.4 CUDA

CP2K

Chemical physics

1.5  CUDA

CAM-SE

Community atmosphere model

1.5 PGI CUDA Fortran

WL-LSMS

Statistical mechanics of magnetic materials

1.6  CUDA

GTC/GTC-GPU

Plasma physics for fusion energy

 1.6  CUDA

 SPECFEM-3D

Seismology

 2.5  CUDA

 QMCPACK

Electronic structure of materials

 3.0  CUDA

 LAMMPS

Molecular dynamics

 3.2  CUDA

 Denovo

3D neutron transport for nuclear reactors

 3.3  CUDA

 Chroma

Lattice quantum chromodynamics

 6.1  CUDA

According to this, the Fermi GPU-equipped XK6 was able to extract between 140 and 610 percent of the application performance compared to the CPU-only XE6. As CSCS director Thomas Schulthess observed at the symposium, that takes into account the fact the Interlagos Opteron is a new x86 processor, while Fermi is a two-year-old design. The implication is that the upcoming Kepler K20 GPU, which is supposed to be available later this year (and which will be deployed in Titan and Blue Waters), should widen the CPU-GPU performance gap even more.

“It’s going to be interesting to see in the next few years if there’s going to be a small avalanche, or is a big avalanche coming that’s really going to revolutionize computational science.” said Schulthess.

Even though the researchers provided an apples-to-apples comparison from a hardware perspective, the application software implementation for the two architectures is, by definition, rather different. Although the report did not delve too deeply into the software frameworks, most of these GPU codes incorporated CUDA or CUDA-based libraries. Only two of the applications, CAM-SE and S3D, used a higher level programming approach: PGI’s CUDA Fortran compiler for CAM-SE and OpenACC directives (compiler unknown) for the S3D implementation. Neither of these did particularly well, relative to the performance increases for the other applications, but there are not enough examples here to make any generalizations.

The other thing to keep in mind is that is no guarantee that the code implementations for either the CPU-only or hybrid versions are optimal at extracting the maximum performance from the silicon. A Fermi-class Tesla M2090 module delivers 665 gigaflops of peak performance, which is about 5 or 6 times that of a high-end Opteron 6200. The only code that appeared to fully exploit the performance advantage of the GPU was Chroma, the code for high energy and nuclear physics. Since applications vary significantly in their potential to utilize a highly threaded architecture like a GPU, this should come as no surprise.

Another aspect that needs to be taken into account is power usage. Although the performance comparison between the two processors is a useful one, if codes can scale equally well on a CPU as a GPU, performance per watt becomes a more valid criteria. Since these GPU accelerators consume about twice the power of a high-end x86 under full load, that means each hybrid node uses 50 percent more power than the corresponding CPU-only one when those systems are running at peak.

That suggests that the GPU-accelerated version of these codes should probably run at least 1.5 times as fast in this configuration to keep performance per watt in line. (Note that half of these codes are clustered around that break-even point.) To be fair, that’s not precisely true, since when the graphics engine is not being fully utilized it won’t be drawing anything near its maximum wattage; in general the GPU is much more efficient at throughput computing than its CPU brethren. But the fact remains that the power-performance behavior of the codes needs to be factored in when you’re considering the advantages of GPU acceleration.

Another missing piece of this comparison is how well these same applications would run on NVIDIA’s HPC competition, namely Intel’s Xeon Phi (aka MIC) coprocessor and its very different software ecosystem. Of course, there is no Xeon Phi yet, so that comparison can’t yet be made. But by this time next year, teraflop-capable MIC and Kepler chips should be in crunching away at applications on production machines. At that point, the case for accelerated science codes could be even more compelling.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose primary use case is to support high IOPS rates to/from a scra Read more…

By John Russell

Lenovo to Debut ‘Neptune’ Cooling Technologies at ISC ‘18

June 19, 2018

Lenovo today announced a set of cooling technologies, dubbed Neptune, that include direct to node (DTN) warm water cooling, rear door heat exchanger (RDHX), and hybrid solutions that combine air and liquid cooling. Lenov Read more…

By John Russell

World Cup is Lame Compared to This Competition

June 18, 2018

So you think World Cup soccer is a big deal? While I’m sure it’s very compelling to watch a bunch of athletes kick a ball around, World Cup misses the boat because it doesn’t include teams putting together their ow Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

IBM Demonstrates Deep Neural Network Training with Analog Memory Devices

June 18, 2018

From smarter, more personalized apps to seemingly-ubiquitous Google Assistant and Alexa devices, AI adoption is showing no signs of slowing down – and yet, the hardware used for AI is far from perfect. Currently, GPUs Read more…

By Oliver Peckham

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This