Researchers Squeeze GPU Performance from 11 Big Science Apps

By Michael Feldman

July 18, 2012

The GPGPU faithful received another round of encouraging news this week. In a report  published this week, researchers documented that GPU-equipped supercomputers enabled application speedups between 1.4x and 6.1x across a range of well-known science codes. While those results aren’t the order of magnitude performance increases that were being bandied about in the early days of GPU computing, the researchers were encouraged that the technology is producing consistently good results with some of the most popular HPC science applications in the world.

The work was presented in March at the Accelerating Computational Science Symposium, an event devoted to understanding the use of hybrid supercomputers for scientific research. The ensuing report published by the Oak Ridge Leadership Computing Facility, detailed the performance GPU acceleration across the science application spectrum — biology, chemical physics, combustion, nuclear fission and fusion, material science, seismology, molecular dynamics, and climatology.

The 11 simulation codes tested –  S3D, Denovo, LAMMPS, WL-LSMS, CAM-SE, NAMD, Chroma, QMCPACK, SPECFEM-3D, GTC, and CP2K — are used by tens of thousands of researchers worldwide. NAMD alone has over 50 thousand users.

It should be noted that all of the principle participants at the symposium, including Oak Ridge National Laboratory (ORNL), the National Center for Supercomputing Applications (NCSA) and the Swiss National Supercomputing Center (CSCS), not to mention symposium sponsors Cray and NVIDIA, have a stake in proving the viability of GPU-accelerated supercomputing. The three supercomputing centers recently made substantial investments in GPU-based HPC, ORNL with its upcoming 20-plus-petaflop Titan system, NCSA with the 10-petaflop Blue Waters supercomputer, and CSCS with its currently installed 176-node Todi machine.

Titan, Blue Waters and Todi are all Cray supercomputers with varying amounts of AMD Opteron and NVIDIA Tesla horsepower, although none with greater than a 1:1 GPU-to-CPU ratio. That assumes a certain balance in the application between the sequential pieces of the code that would best be run on the CPU and the parallel components that would be candidates for the GPU. But applications can have very different needs in this regard, so that hardware ratio may not always be optimal. Vendors such as HP, Dell, Appro and others offer systems with much higher ratios of GPU to CPUs.

To level the playing field as much as possible, the performance runs for the science apps were made on CSCS’s Monte Rosa, a Cray XE6 machine equipped with two AMD “Interlagos” (Opteron 6200) CPUs per node, and TitanDev, a XK6 Titan-based testbed that consists of hybrid nodes, each of which contain one NVIDIA Fermi GPU and one Interlagos CPU . So in essence, the applications were tested on the same two systems, one of which replaced the second CPU with a GPU in each node. Here are the results:

Application

Performance

XK6 vs XE6

Software Framework

S3D

Turbulent combustion

1.4 OpenACC

NAMD

Molecular dynamics

1.4 CUDA

CP2K

Chemical physics

1.5  CUDA

CAM-SE

Community atmosphere model

1.5 PGI CUDA Fortran

WL-LSMS

Statistical mechanics of magnetic materials

1.6  CUDA

GTC/GTC-GPU

Plasma physics for fusion energy

 1.6  CUDA

 SPECFEM-3D

Seismology

 2.5  CUDA

 QMCPACK

Electronic structure of materials

 3.0  CUDA

 LAMMPS

Molecular dynamics

 3.2  CUDA

 Denovo

3D neutron transport for nuclear reactors

 3.3  CUDA

 Chroma

Lattice quantum chromodynamics

 6.1  CUDA

According to this, the Fermi GPU-equipped XK6 was able to extract between 140 and 610 percent of the application performance compared to the CPU-only XE6. As CSCS director Thomas Schulthess observed at the symposium, that takes into account the fact the Interlagos Opteron is a new x86 processor, while Fermi is a two-year-old design. The implication is that the upcoming Kepler K20 GPU, which is supposed to be available later this year (and which will be deployed in Titan and Blue Waters), should widen the CPU-GPU performance gap even more.

“It’s going to be interesting to see in the next few years if there’s going to be a small avalanche, or is a big avalanche coming that’s really going to revolutionize computational science.” said Schulthess.

Even though the researchers provided an apples-to-apples comparison from a hardware perspective, the application software implementation for the two architectures is, by definition, rather different. Although the report did not delve too deeply into the software frameworks, most of these GPU codes incorporated CUDA or CUDA-based libraries. Only two of the applications, CAM-SE and S3D, used a higher level programming approach: PGI’s CUDA Fortran compiler for CAM-SE and OpenACC directives (compiler unknown) for the S3D implementation. Neither of these did particularly well, relative to the performance increases for the other applications, but there are not enough examples here to make any generalizations.

The other thing to keep in mind is that is no guarantee that the code implementations for either the CPU-only or hybrid versions are optimal at extracting the maximum performance from the silicon. A Fermi-class Tesla M2090 module delivers 665 gigaflops of peak performance, which is about 5 or 6 times that of a high-end Opteron 6200. The only code that appeared to fully exploit the performance advantage of the GPU was Chroma, the code for high energy and nuclear physics. Since applications vary significantly in their potential to utilize a highly threaded architecture like a GPU, this should come as no surprise.

Another aspect that needs to be taken into account is power usage. Although the performance comparison between the two processors is a useful one, if codes can scale equally well on a CPU as a GPU, performance per watt becomes a more valid criteria. Since these GPU accelerators consume about twice the power of a high-end x86 under full load, that means each hybrid node uses 50 percent more power than the corresponding CPU-only one when those systems are running at peak.

That suggests that the GPU-accelerated version of these codes should probably run at least 1.5 times as fast in this configuration to keep performance per watt in line. (Note that half of these codes are clustered around that break-even point.) To be fair, that’s not precisely true, since when the graphics engine is not being fully utilized it won’t be drawing anything near its maximum wattage; in general the GPU is much more efficient at throughput computing than its CPU brethren. But the fact remains that the power-performance behavior of the codes needs to be factored in when you’re considering the advantages of GPU acceleration.

Another missing piece of this comparison is how well these same applications would run on NVIDIA’s HPC competition, namely Intel’s Xeon Phi (aka MIC) coprocessor and its very different software ecosystem. Of course, there is no Xeon Phi yet, so that comparison can’t yet be made. But by this time next year, teraflop-capable MIC and Kepler chips should be in crunching away at applications on production machines. At that point, the case for accelerated science codes could be even more compelling.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire