Researchers Squeeze GPU Performance from 11 Big Science Apps

By Michael Feldman

July 18, 2012

The GPGPU faithful received another round of encouraging news this week. In a report  published this week, researchers documented that GPU-equipped supercomputers enabled application speedups between 1.4x and 6.1x across a range of well-known science codes. While those results aren’t the order of magnitude performance increases that were being bandied about in the early days of GPU computing, the researchers were encouraged that the technology is producing consistently good results with some of the most popular HPC science applications in the world.

The work was presented in March at the Accelerating Computational Science Symposium, an event devoted to understanding the use of hybrid supercomputers for scientific research. The ensuing report published by the Oak Ridge Leadership Computing Facility, detailed the performance GPU acceleration across the science application spectrum — biology, chemical physics, combustion, nuclear fission and fusion, material science, seismology, molecular dynamics, and climatology.

The 11 simulation codes tested –  S3D, Denovo, LAMMPS, WL-LSMS, CAM-SE, NAMD, Chroma, QMCPACK, SPECFEM-3D, GTC, and CP2K — are used by tens of thousands of researchers worldwide. NAMD alone has over 50 thousand users.

It should be noted that all of the principle participants at the symposium, including Oak Ridge National Laboratory (ORNL), the National Center for Supercomputing Applications (NCSA) and the Swiss National Supercomputing Center (CSCS), not to mention symposium sponsors Cray and NVIDIA, have a stake in proving the viability of GPU-accelerated supercomputing. The three supercomputing centers recently made substantial investments in GPU-based HPC, ORNL with its upcoming 20-plus-petaflop Titan system, NCSA with the 10-petaflop Blue Waters supercomputer, and CSCS with its currently installed 176-node Todi machine.

Titan, Blue Waters and Todi are all Cray supercomputers with varying amounts of AMD Opteron and NVIDIA Tesla horsepower, although none with greater than a 1:1 GPU-to-CPU ratio. That assumes a certain balance in the application between the sequential pieces of the code that would best be run on the CPU and the parallel components that would be candidates for the GPU. But applications can have very different needs in this regard, so that hardware ratio may not always be optimal. Vendors such as HP, Dell, Appro and others offer systems with much higher ratios of GPU to CPUs.

To level the playing field as much as possible, the performance runs for the science apps were made on CSCS’s Monte Rosa, a Cray XE6 machine equipped with two AMD “Interlagos” (Opteron 6200) CPUs per node, and TitanDev, a XK6 Titan-based testbed that consists of hybrid nodes, each of which contain one NVIDIA Fermi GPU and one Interlagos CPU . So in essence, the applications were tested on the same two systems, one of which replaced the second CPU with a GPU in each node. Here are the results:

Application

Performance

XK6 vs XE6

Software Framework

S3D

Turbulent combustion

1.4 OpenACC

NAMD

Molecular dynamics

1.4 CUDA

CP2K

Chemical physics

1.5  CUDA

CAM-SE

Community atmosphere model

1.5 PGI CUDA Fortran

WL-LSMS

Statistical mechanics of magnetic materials

1.6  CUDA

GTC/GTC-GPU

Plasma physics for fusion energy

 1.6  CUDA

 SPECFEM-3D

Seismology

 2.5  CUDA

 QMCPACK

Electronic structure of materials

 3.0  CUDA

 LAMMPS

Molecular dynamics

 3.2  CUDA

 Denovo

3D neutron transport for nuclear reactors

 3.3  CUDA

 Chroma

Lattice quantum chromodynamics

 6.1  CUDA

According to this, the Fermi GPU-equipped XK6 was able to extract between 140 and 610 percent of the application performance compared to the CPU-only XE6. As CSCS director Thomas Schulthess observed at the symposium, that takes into account the fact the Interlagos Opteron is a new x86 processor, while Fermi is a two-year-old design. The implication is that the upcoming Kepler K20 GPU, which is supposed to be available later this year (and which will be deployed in Titan and Blue Waters), should widen the CPU-GPU performance gap even more.

“It’s going to be interesting to see in the next few years if there’s going to be a small avalanche, or is a big avalanche coming that’s really going to revolutionize computational science.” said Schulthess.

Even though the researchers provided an apples-to-apples comparison from a hardware perspective, the application software implementation for the two architectures is, by definition, rather different. Although the report did not delve too deeply into the software frameworks, most of these GPU codes incorporated CUDA or CUDA-based libraries. Only two of the applications, CAM-SE and S3D, used a higher level programming approach: PGI’s CUDA Fortran compiler for CAM-SE and OpenACC directives (compiler unknown) for the S3D implementation. Neither of these did particularly well, relative to the performance increases for the other applications, but there are not enough examples here to make any generalizations.

The other thing to keep in mind is that is no guarantee that the code implementations for either the CPU-only or hybrid versions are optimal at extracting the maximum performance from the silicon. A Fermi-class Tesla M2090 module delivers 665 gigaflops of peak performance, which is about 5 or 6 times that of a high-end Opteron 6200. The only code that appeared to fully exploit the performance advantage of the GPU was Chroma, the code for high energy and nuclear physics. Since applications vary significantly in their potential to utilize a highly threaded architecture like a GPU, this should come as no surprise.

Another aspect that needs to be taken into account is power usage. Although the performance comparison between the two processors is a useful one, if codes can scale equally well on a CPU as a GPU, performance per watt becomes a more valid criteria. Since these GPU accelerators consume about twice the power of a high-end x86 under full load, that means each hybrid node uses 50 percent more power than the corresponding CPU-only one when those systems are running at peak.

That suggests that the GPU-accelerated version of these codes should probably run at least 1.5 times as fast in this configuration to keep performance per watt in line. (Note that half of these codes are clustered around that break-even point.) To be fair, that’s not precisely true, since when the graphics engine is not being fully utilized it won’t be drawing anything near its maximum wattage; in general the GPU is much more efficient at throughput computing than its CPU brethren. But the fact remains that the power-performance behavior of the codes needs to be factored in when you’re considering the advantages of GPU acceleration.

Another missing piece of this comparison is how well these same applications would run on NVIDIA’s HPC competition, namely Intel’s Xeon Phi (aka MIC) coprocessor and its very different software ecosystem. Of course, there is no Xeon Phi yet, so that comparison can’t yet be made. But by this time next year, teraflop-capable MIC and Kepler chips should be in crunching away at applications on production machines. At that point, the case for accelerated science codes could be even more compelling.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This