CAE in the Cloud – New Business Opportunities for Manufacturers and ISVs

By Wolfgang Gentzsch and Burak Yenier

July 19, 2012

cloud keyMost manufacturers, especially small and medium businesses (SMBs), mainly use desktop workstations for their daily R&D work, according to NCMS (the National Center for Manufacturing Sciences). Often they do prep work during the day and production runs over-night, resulting in one simulation job per day. In this article, we will investigate how breaking the CAE jobs free from the restrictions of the workstation environment and moving them to the cloud could benefit the CAE engineers as well as the CAE software vendors.

Let’s start with some HPC facts before we look at the Cloud

  • An NCMS study shows that only 15% of the US manufacturing companies are utilizing high-performance computing (HPC), where the rest, the 85%, are using technical workstations to do CAD and CAE.

  • In the same NCMS study 57% of the manufacturers said that they have problems that they can’t solve with their existing desktop computers. Clearly, they have a real need for more computing power and again clearly some barriers are preventing them from getting access to it.

  • Most important benefits for workstation users to upgrade to entry-level HPC are:

1. Enormous economic benefits (Alcoa reported a 98% cost reduction in product testing).

2. Optimized processes (Procter & Gamble saved millions by optimizing its Pringles line).

3. Shorter time to market (PING Golf cut its design cycle time by 68%).

  • The most severe barriers to HPC adoption of workstation users are: lack of application software, lack of sufficient talent, and cost constraints.

Therefore, buying their own high-performance multi-server clusters to speed up each simulation run, do more frequent CAE simulation runs, or to analyze larger geometries, finer meshes/more cells, or better physics, are simply out of reach for many companies. And here is where HPC in the Cloud could really level the playing field.

A Convincing CFD Use Case Scenario – Private versus Public Resources

It is quite common for R&D teams to follow an iterative CAD/CAE process for designing or modifying a product’s geometry by gradually modifying the physics (application software, set of input parameters, initial flow field), and performing many simulation runs on the engineer’s workstation to find improvements.

To illustrate our scenario, suppose the engineer selects a discrete granularity of 20 million cells (or finite elements) for his analysis and composes an application batch job which then runs 15 hours on his high-end $10K workstation (these days e.g., Intel Xeon E5-2670 dual 8-core, Sandy Bridge), which has just enough memory to host the whole problem. This means one job a day, five jobs a week. Because the workstation runs at its limits, there is no way to speed up these jobs, to run larger geometries and more complex physics; or any opportunity to improve the quality of the results.

Suppose the engineer believes that the quality of the simulation results would improve from a finer mesh decomposition, say by a moderate factor of 2 in each (x,y,and z) dimension, resulting in about 2*2*2 = 8 times more cells (or finite elements), 120 million, 8 times more memory need, and at least 8 times longer runs (8 * 15 = 120 hours) of the batch job on the workstation. But again since the workstation is the limiting factor there no way to perform such a job his workstation due to its memory and computing power limitations. And with the multi-server HPC being out of reach, our engineer has no where to turn.

Cloud computing offers a potential solution: no upfront capital expenditure, no lengthy and tedious purchasing procedure, no management approval necessary, no deep HPC expertise needed.

Getting back to our scenario above, and focusing on Amazon’s EC2 Compute Cluster Instances (CCIs) as an example, we find the Eight Extra Large CCIs comparable to our engineer’s workstation, each CCI equipped with dual 8-core Intel Xeon E5-2670, at $2.40 per CCI per hour, on demand cost about $0.50 on the Amazon spot market.

Submitting now the above mentioned 15-hour job to EC2 and running it on 20 CCIs would reduce the run time of the job to about 1 hour, at a total cost of 20 CCIs x 1 hour x $2.40 = $48.00 for the whole job. Let’s not forget the cost for the application licenses on demand, for 20 CCIs for 1 hour. It’s important to point out that we assume the software is able to make use of the available CPU’s and process the job in many parallel pieces efficiently, which is a quite safe assumption for CFD software.

Let’s now return to our scenario and see what happens if we apply the finer mesh decomposition, which will increase the number of cells by a factor of 8. On the workstation this job would run in 8×15= 120 hours (5 days) and on 20 CCI instances on EC2 the runtime would be around 8 hours for the cost of 8 hours x 20 instances x $2.40 per instance= $384.

This simple example demonstrates that a much bigger job, which was impossible to execute on a workstation, can be run on Cloud resources in a short time and at a reasonable price.

What does this all mean for the manufacturer and for the ISV?

Let’s look at the benefits of this new computing paradigm for the stakeholders. One important remark upfront: we don’t mean to suggest replacing the engineer’s workstation and ISV’s software license on that workstation with Cloud resources. These tools will continue to be invaluable for the engineer and his R&D projects. We view Cloud computing and on-demand software licenses as an additional, complementary benefit for the engineer’s daily work.

The Engineer’s benefits:

The benefits for the engineer in using Cloud resources have been demonstrated above: faster execution of the job; execution of the job in the Cloud while preparing the next job on his workstation; running more than one job at a time with (slightly) different parameters thus increasing the quality of the results; and running bigger jobs with finer geometries and better physics thus further increasing the quality of the results.

The ISV’s benefits:

An engineer turning to the Cloud because of the just mentioned scenarios and benefits will (have to) continue to use the application software license on his workstation, for business as usual, as demanded by the typical and standard R&D scenarios described above.

The Cloud enables additional opportunities for the engineer to do more, faster, better. For all these additional scenarios, the ISV sells additional licenses, on demand, paid by the hour, resulting in additional business, on top of the workstation license business.

Even for those companies which already have an HPC cluster in their computing center, bursting into a Cloud offers much higher efficiency and flexibility for the engineers, and results in additional license-on-demand business for the ISV.

Finally, ISVs offering application software on demand are able to attract new customers who are just getting started with computer simulations, and who would never think of buying a license for just a few simulations.

For all these good reasons, I strongly doubt that there will be any negative impact from cloud-based on-demand licensing for ISVs, as it is sometimes concluded in our community. On the contrary, if introduced with care, e.g., with some early incentives for their existing customer base, ISVs will be able to add new business right from the start.

What are we waiting for?

To explore the Cloud computing model in CAE, we have developed an experiment that brings together the four major stakeholders: manufacturing end users, resource providers, software providers, and subject matter experts.

The idea is to better understand the end-to-end process of using remote resources available in high-performance technical computing centers and in clouds, and figure out how to achieve the benefits of service-based delivery. We believe the technology is not the challenge anymore; rather the challenge is bringing the right people together.

The experiment is scheduled to begin later in July and will run for three months. At that point, the results will be made publicly available to the manufacturing and the HPC community.

Anyone interested in participating at this experiment can register at http://www.hpcexperiment.com. More information about the experiment is available at http://www.hpcwire.com/hpcwire/2012-06-28/the_uber-cloud_experiment.html.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This