CAE in the Cloud – New Business Opportunities for Manufacturers and ISVs

By Wolfgang Gentzsch and Burak Yenier

July 19, 2012

cloud keyMost manufacturers, especially small and medium businesses (SMBs), mainly use desktop workstations for their daily R&D work, according to NCMS (the National Center for Manufacturing Sciences). Often they do prep work during the day and production runs over-night, resulting in one simulation job per day. In this article, we will investigate how breaking the CAE jobs free from the restrictions of the workstation environment and moving them to the cloud could benefit the CAE engineers as well as the CAE software vendors.

Let’s start with some HPC facts before we look at the Cloud

  • An NCMS study shows that only 15% of the US manufacturing companies are utilizing high-performance computing (HPC), where the rest, the 85%, are using technical workstations to do CAD and CAE.

  • In the same NCMS study 57% of the manufacturers said that they have problems that they can’t solve with their existing desktop computers. Clearly, they have a real need for more computing power and again clearly some barriers are preventing them from getting access to it.

  • Most important benefits for workstation users to upgrade to entry-level HPC are:

1. Enormous economic benefits (Alcoa reported a 98% cost reduction in product testing).

2. Optimized processes (Procter & Gamble saved millions by optimizing its Pringles line).

3. Shorter time to market (PING Golf cut its design cycle time by 68%).

  • The most severe barriers to HPC adoption of workstation users are: lack of application software, lack of sufficient talent, and cost constraints.

Therefore, buying their own high-performance multi-server clusters to speed up each simulation run, do more frequent CAE simulation runs, or to analyze larger geometries, finer meshes/more cells, or better physics, are simply out of reach for many companies. And here is where HPC in the Cloud could really level the playing field.

A Convincing CFD Use Case Scenario – Private versus Public Resources

It is quite common for R&D teams to follow an iterative CAD/CAE process for designing or modifying a product’s geometry by gradually modifying the physics (application software, set of input parameters, initial flow field), and performing many simulation runs on the engineer’s workstation to find improvements.

To illustrate our scenario, suppose the engineer selects a discrete granularity of 20 million cells (or finite elements) for his analysis and composes an application batch job which then runs 15 hours on his high-end $10K workstation (these days e.g., Intel Xeon E5-2670 dual 8-core, Sandy Bridge), which has just enough memory to host the whole problem. This means one job a day, five jobs a week. Because the workstation runs at its limits, there is no way to speed up these jobs, to run larger geometries and more complex physics; or any opportunity to improve the quality of the results.

Suppose the engineer believes that the quality of the simulation results would improve from a finer mesh decomposition, say by a moderate factor of 2 in each (x,y,and z) dimension, resulting in about 2*2*2 = 8 times more cells (or finite elements), 120 million, 8 times more memory need, and at least 8 times longer runs (8 * 15 = 120 hours) of the batch job on the workstation. But again since the workstation is the limiting factor there no way to perform such a job his workstation due to its memory and computing power limitations. And with the multi-server HPC being out of reach, our engineer has no where to turn.

Cloud computing offers a potential solution: no upfront capital expenditure, no lengthy and tedious purchasing procedure, no management approval necessary, no deep HPC expertise needed.

Getting back to our scenario above, and focusing on Amazon’s EC2 Compute Cluster Instances (CCIs) as an example, we find the Eight Extra Large CCIs comparable to our engineer’s workstation, each CCI equipped with dual 8-core Intel Xeon E5-2670, at $2.40 per CCI per hour, on demand cost about $0.50 on the Amazon spot market.

Submitting now the above mentioned 15-hour job to EC2 and running it on 20 CCIs would reduce the run time of the job to about 1 hour, at a total cost of 20 CCIs x 1 hour x $2.40 = $48.00 for the whole job. Let’s not forget the cost for the application licenses on demand, for 20 CCIs for 1 hour. It’s important to point out that we assume the software is able to make use of the available CPU’s and process the job in many parallel pieces efficiently, which is a quite safe assumption for CFD software.

Let’s now return to our scenario and see what happens if we apply the finer mesh decomposition, which will increase the number of cells by a factor of 8. On the workstation this job would run in 8×15= 120 hours (5 days) and on 20 CCI instances on EC2 the runtime would be around 8 hours for the cost of 8 hours x 20 instances x $2.40 per instance= $384.

This simple example demonstrates that a much bigger job, which was impossible to execute on a workstation, can be run on Cloud resources in a short time and at a reasonable price.

What does this all mean for the manufacturer and for the ISV?

Let’s look at the benefits of this new computing paradigm for the stakeholders. One important remark upfront: we don’t mean to suggest replacing the engineer’s workstation and ISV’s software license on that workstation with Cloud resources. These tools will continue to be invaluable for the engineer and his R&D projects. We view Cloud computing and on-demand software licenses as an additional, complementary benefit for the engineer’s daily work.

The Engineer’s benefits:

The benefits for the engineer in using Cloud resources have been demonstrated above: faster execution of the job; execution of the job in the Cloud while preparing the next job on his workstation; running more than one job at a time with (slightly) different parameters thus increasing the quality of the results; and running bigger jobs with finer geometries and better physics thus further increasing the quality of the results.

The ISV’s benefits:

An engineer turning to the Cloud because of the just mentioned scenarios and benefits will (have to) continue to use the application software license on his workstation, for business as usual, as demanded by the typical and standard R&D scenarios described above.

The Cloud enables additional opportunities for the engineer to do more, faster, better. For all these additional scenarios, the ISV sells additional licenses, on demand, paid by the hour, resulting in additional business, on top of the workstation license business.

Even for those companies which already have an HPC cluster in their computing center, bursting into a Cloud offers much higher efficiency and flexibility for the engineers, and results in additional license-on-demand business for the ISV.

Finally, ISVs offering application software on demand are able to attract new customers who are just getting started with computer simulations, and who would never think of buying a license for just a few simulations.

For all these good reasons, I strongly doubt that there will be any negative impact from cloud-based on-demand licensing for ISVs, as it is sometimes concluded in our community. On the contrary, if introduced with care, e.g., with some early incentives for their existing customer base, ISVs will be able to add new business right from the start.

What are we waiting for?

To explore the Cloud computing model in CAE, we have developed an experiment that brings together the four major stakeholders: manufacturing end users, resource providers, software providers, and subject matter experts.

The idea is to better understand the end-to-end process of using remote resources available in high-performance technical computing centers and in clouds, and figure out how to achieve the benefits of service-based delivery. We believe the technology is not the challenge anymore; rather the challenge is bringing the right people together.

The experiment is scheduled to begin later in July and will run for three months. At that point, the results will be made publicly available to the manufacturing and the HPC community.

Anyone interested in participating at this experiment can register at More information about the experiment is available at

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This