CAE in the Cloud – New Business Opportunities for Manufacturers and ISVs

By Wolfgang Gentzsch and Burak Yenier

July 19, 2012

cloud keyMost manufacturers, especially small and medium businesses (SMBs), mainly use desktop workstations for their daily R&D work, according to NCMS (the National Center for Manufacturing Sciences). Often they do prep work during the day and production runs over-night, resulting in one simulation job per day. In this article, we will investigate how breaking the CAE jobs free from the restrictions of the workstation environment and moving them to the cloud could benefit the CAE engineers as well as the CAE software vendors.

Let’s start with some HPC facts before we look at the Cloud

  • An NCMS study shows that only 15% of the US manufacturing companies are utilizing high-performance computing (HPC), where the rest, the 85%, are using technical workstations to do CAD and CAE.

  • In the same NCMS study 57% of the manufacturers said that they have problems that they can’t solve with their existing desktop computers. Clearly, they have a real need for more computing power and again clearly some barriers are preventing them from getting access to it.

  • Most important benefits for workstation users to upgrade to entry-level HPC are:

1. Enormous economic benefits (Alcoa reported a 98% cost reduction in product testing).

2. Optimized processes (Procter & Gamble saved millions by optimizing its Pringles line).

3. Shorter time to market (PING Golf cut its design cycle time by 68%).

  • The most severe barriers to HPC adoption of workstation users are: lack of application software, lack of sufficient talent, and cost constraints.

Therefore, buying their own high-performance multi-server clusters to speed up each simulation run, do more frequent CAE simulation runs, or to analyze larger geometries, finer meshes/more cells, or better physics, are simply out of reach for many companies. And here is where HPC in the Cloud could really level the playing field.

A Convincing CFD Use Case Scenario – Private versus Public Resources

It is quite common for R&D teams to follow an iterative CAD/CAE process for designing or modifying a product’s geometry by gradually modifying the physics (application software, set of input parameters, initial flow field), and performing many simulation runs on the engineer’s workstation to find improvements.

To illustrate our scenario, suppose the engineer selects a discrete granularity of 20 million cells (or finite elements) for his analysis and composes an application batch job which then runs 15 hours on his high-end $10K workstation (these days e.g., Intel Xeon E5-2670 dual 8-core, Sandy Bridge), which has just enough memory to host the whole problem. This means one job a day, five jobs a week. Because the workstation runs at its limits, there is no way to speed up these jobs, to run larger geometries and more complex physics; or any opportunity to improve the quality of the results.

Suppose the engineer believes that the quality of the simulation results would improve from a finer mesh decomposition, say by a moderate factor of 2 in each (x,y,and z) dimension, resulting in about 2*2*2 = 8 times more cells (or finite elements), 120 million, 8 times more memory need, and at least 8 times longer runs (8 * 15 = 120 hours) of the batch job on the workstation. But again since the workstation is the limiting factor there no way to perform such a job his workstation due to its memory and computing power limitations. And with the multi-server HPC being out of reach, our engineer has no where to turn.

Cloud computing offers a potential solution: no upfront capital expenditure, no lengthy and tedious purchasing procedure, no management approval necessary, no deep HPC expertise needed.

Getting back to our scenario above, and focusing on Amazon’s EC2 Compute Cluster Instances (CCIs) as an example, we find the Eight Extra Large CCIs comparable to our engineer’s workstation, each CCI equipped with dual 8-core Intel Xeon E5-2670, at $2.40 per CCI per hour, on demand cost about $0.50 on the Amazon spot market.

Submitting now the above mentioned 15-hour job to EC2 and running it on 20 CCIs would reduce the run time of the job to about 1 hour, at a total cost of 20 CCIs x 1 hour x $2.40 = $48.00 for the whole job. Let’s not forget the cost for the application licenses on demand, for 20 CCIs for 1 hour. It’s important to point out that we assume the software is able to make use of the available CPU’s and process the job in many parallel pieces efficiently, which is a quite safe assumption for CFD software.

Let’s now return to our scenario and see what happens if we apply the finer mesh decomposition, which will increase the number of cells by a factor of 8. On the workstation this job would run in 8×15= 120 hours (5 days) and on 20 CCI instances on EC2 the runtime would be around 8 hours for the cost of 8 hours x 20 instances x $2.40 per instance= $384.

This simple example demonstrates that a much bigger job, which was impossible to execute on a workstation, can be run on Cloud resources in a short time and at a reasonable price.

What does this all mean for the manufacturer and for the ISV?

Let’s look at the benefits of this new computing paradigm for the stakeholders. One important remark upfront: we don’t mean to suggest replacing the engineer’s workstation and ISV’s software license on that workstation with Cloud resources. These tools will continue to be invaluable for the engineer and his R&D projects. We view Cloud computing and on-demand software licenses as an additional, complementary benefit for the engineer’s daily work.

The Engineer’s benefits:

The benefits for the engineer in using Cloud resources have been demonstrated above: faster execution of the job; execution of the job in the Cloud while preparing the next job on his workstation; running more than one job at a time with (slightly) different parameters thus increasing the quality of the results; and running bigger jobs with finer geometries and better physics thus further increasing the quality of the results.

The ISV’s benefits:

An engineer turning to the Cloud because of the just mentioned scenarios and benefits will (have to) continue to use the application software license on his workstation, for business as usual, as demanded by the typical and standard R&D scenarios described above.

The Cloud enables additional opportunities for the engineer to do more, faster, better. For all these additional scenarios, the ISV sells additional licenses, on demand, paid by the hour, resulting in additional business, on top of the workstation license business.

Even for those companies which already have an HPC cluster in their computing center, bursting into a Cloud offers much higher efficiency and flexibility for the engineers, and results in additional license-on-demand business for the ISV.

Finally, ISVs offering application software on demand are able to attract new customers who are just getting started with computer simulations, and who would never think of buying a license for just a few simulations.

For all these good reasons, I strongly doubt that there will be any negative impact from cloud-based on-demand licensing for ISVs, as it is sometimes concluded in our community. On the contrary, if introduced with care, e.g., with some early incentives for their existing customer base, ISVs will be able to add new business right from the start.

What are we waiting for?

To explore the Cloud computing model in CAE, we have developed an experiment that brings together the four major stakeholders: manufacturing end users, resource providers, software providers, and subject matter experts.

The idea is to better understand the end-to-end process of using remote resources available in high-performance technical computing centers and in clouds, and figure out how to achieve the benefits of service-based delivery. We believe the technology is not the challenge anymore; rather the challenge is bringing the right people together.

The experiment is scheduled to begin later in July and will run for three months. At that point, the results will be made publicly available to the manufacturing and the HPC community.

Anyone interested in participating at this experiment can register at http://www.hpcexperiment.com. More information about the experiment is available at http://www.hpcwire.com/hpcwire/2012-06-28/the_uber-cloud_experiment.html.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This