CAE in the Cloud – New Business Opportunities for Manufacturers and ISVs

By Wolfgang Gentzsch and Burak Yenier

July 19, 2012

cloud keyMost manufacturers, especially small and medium businesses (SMBs), mainly use desktop workstations for their daily R&D work, according to NCMS (the National Center for Manufacturing Sciences). Often they do prep work during the day and production runs over-night, resulting in one simulation job per day. In this article, we will investigate how breaking the CAE jobs free from the restrictions of the workstation environment and moving them to the cloud could benefit the CAE engineers as well as the CAE software vendors.

Let’s start with some HPC facts before we look at the Cloud

  • An NCMS study shows that only 15% of the US manufacturing companies are utilizing high-performance computing (HPC), where the rest, the 85%, are using technical workstations to do CAD and CAE.

  • In the same NCMS study 57% of the manufacturers said that they have problems that they can’t solve with their existing desktop computers. Clearly, they have a real need for more computing power and again clearly some barriers are preventing them from getting access to it.

  • Most important benefits for workstation users to upgrade to entry-level HPC are:

1. Enormous economic benefits (Alcoa reported a 98% cost reduction in product testing).

2. Optimized processes (Procter & Gamble saved millions by optimizing its Pringles line).

3. Shorter time to market (PING Golf cut its design cycle time by 68%).

  • The most severe barriers to HPC adoption of workstation users are: lack of application software, lack of sufficient talent, and cost constraints.

Therefore, buying their own high-performance multi-server clusters to speed up each simulation run, do more frequent CAE simulation runs, or to analyze larger geometries, finer meshes/more cells, or better physics, are simply out of reach for many companies. And here is where HPC in the Cloud could really level the playing field.

A Convincing CFD Use Case Scenario – Private versus Public Resources

It is quite common for R&D teams to follow an iterative CAD/CAE process for designing or modifying a product’s geometry by gradually modifying the physics (application software, set of input parameters, initial flow field), and performing many simulation runs on the engineer’s workstation to find improvements.

To illustrate our scenario, suppose the engineer selects a discrete granularity of 20 million cells (or finite elements) for his analysis and composes an application batch job which then runs 15 hours on his high-end $10K workstation (these days e.g., Intel Xeon E5-2670 dual 8-core, Sandy Bridge), which has just enough memory to host the whole problem. This means one job a day, five jobs a week. Because the workstation runs at its limits, there is no way to speed up these jobs, to run larger geometries and more complex physics; or any opportunity to improve the quality of the results.

Suppose the engineer believes that the quality of the simulation results would improve from a finer mesh decomposition, say by a moderate factor of 2 in each (x,y,and z) dimension, resulting in about 2*2*2 = 8 times more cells (or finite elements), 120 million, 8 times more memory need, and at least 8 times longer runs (8 * 15 = 120 hours) of the batch job on the workstation. But again since the workstation is the limiting factor there no way to perform such a job his workstation due to its memory and computing power limitations. And with the multi-server HPC being out of reach, our engineer has no where to turn.

Cloud computing offers a potential solution: no upfront capital expenditure, no lengthy and tedious purchasing procedure, no management approval necessary, no deep HPC expertise needed.

Getting back to our scenario above, and focusing on Amazon’s EC2 Compute Cluster Instances (CCIs) as an example, we find the Eight Extra Large CCIs comparable to our engineer’s workstation, each CCI equipped with dual 8-core Intel Xeon E5-2670, at $2.40 per CCI per hour, on demand cost about $0.50 on the Amazon spot market.

Submitting now the above mentioned 15-hour job to EC2 and running it on 20 CCIs would reduce the run time of the job to about 1 hour, at a total cost of 20 CCIs x 1 hour x $2.40 = $48.00 for the whole job. Let’s not forget the cost for the application licenses on demand, for 20 CCIs for 1 hour. It’s important to point out that we assume the software is able to make use of the available CPU’s and process the job in many parallel pieces efficiently, which is a quite safe assumption for CFD software.

Let’s now return to our scenario and see what happens if we apply the finer mesh decomposition, which will increase the number of cells by a factor of 8. On the workstation this job would run in 8×15= 120 hours (5 days) and on 20 CCI instances on EC2 the runtime would be around 8 hours for the cost of 8 hours x 20 instances x $2.40 per instance= $384.

This simple example demonstrates that a much bigger job, which was impossible to execute on a workstation, can be run on Cloud resources in a short time and at a reasonable price.

What does this all mean for the manufacturer and for the ISV?

Let’s look at the benefits of this new computing paradigm for the stakeholders. One important remark upfront: we don’t mean to suggest replacing the engineer’s workstation and ISV’s software license on that workstation with Cloud resources. These tools will continue to be invaluable for the engineer and his R&D projects. We view Cloud computing and on-demand software licenses as an additional, complementary benefit for the engineer’s daily work.

The Engineer’s benefits:

The benefits for the engineer in using Cloud resources have been demonstrated above: faster execution of the job; execution of the job in the Cloud while preparing the next job on his workstation; running more than one job at a time with (slightly) different parameters thus increasing the quality of the results; and running bigger jobs with finer geometries and better physics thus further increasing the quality of the results.

The ISV’s benefits:

An engineer turning to the Cloud because of the just mentioned scenarios and benefits will (have to) continue to use the application software license on his workstation, for business as usual, as demanded by the typical and standard R&D scenarios described above.

The Cloud enables additional opportunities for the engineer to do more, faster, better. For all these additional scenarios, the ISV sells additional licenses, on demand, paid by the hour, resulting in additional business, on top of the workstation license business.

Even for those companies which already have an HPC cluster in their computing center, bursting into a Cloud offers much higher efficiency and flexibility for the engineers, and results in additional license-on-demand business for the ISV.

Finally, ISVs offering application software on demand are able to attract new customers who are just getting started with computer simulations, and who would never think of buying a license for just a few simulations.

For all these good reasons, I strongly doubt that there will be any negative impact from cloud-based on-demand licensing for ISVs, as it is sometimes concluded in our community. On the contrary, if introduced with care, e.g., with some early incentives for their existing customer base, ISVs will be able to add new business right from the start.

What are we waiting for?

To explore the Cloud computing model in CAE, we have developed an experiment that brings together the four major stakeholders: manufacturing end users, resource providers, software providers, and subject matter experts.

The idea is to better understand the end-to-end process of using remote resources available in high-performance technical computing centers and in clouds, and figure out how to achieve the benefits of service-based delivery. We believe the technology is not the challenge anymore; rather the challenge is bringing the right people together.

The experiment is scheduled to begin later in July and will run for three months. At that point, the results will be made publicly available to the manufacturing and the HPC community.

Anyone interested in participating at this experiment can register at http://www.hpcexperiment.com. More information about the experiment is available at http://www.hpcwire.com/hpcwire/2012-06-28/the_uber-cloud_experiment.html.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Ohio Supercomputer Center Dedicates ‘Owens’ Cluster

March 29, 2017

In a dedication ceremony held earlier today (March 29), officials from Ohio Supercomputer Center (OSC) along with state representatives gathered to celebrate the launch of OSC’s newest cluster: Read more…

By Tiffany Trader

EU Ratchets up the Race to Exascale Computing

March 29, 2017

The race to expand HPC infrastructure, including exascale machines, to advance national and regional interests ratcheted up a notch yesterday with announcement that seven European countries – Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This