CAE in the Cloud – New Business Opportunities for Manufacturers and ISVs

By Wolfgang Gentzsch and Burak Yenier

July 19, 2012

cloud keyMost manufacturers, especially small and medium businesses (SMBs), mainly use desktop workstations for their daily R&D work, according to NCMS (the National Center for Manufacturing Sciences). Often they do prep work during the day and production runs over-night, resulting in one simulation job per day. In this article, we will investigate how breaking the CAE jobs free from the restrictions of the workstation environment and moving them to the cloud could benefit the CAE engineers as well as the CAE software vendors.

Let’s start with some HPC facts before we look at the Cloud

  • An NCMS study shows that only 15% of the US manufacturing companies are utilizing high-performance computing (HPC), where the rest, the 85%, are using technical workstations to do CAD and CAE.

  • In the same NCMS study 57% of the manufacturers said that they have problems that they can’t solve with their existing desktop computers. Clearly, they have a real need for more computing power and again clearly some barriers are preventing them from getting access to it.

  • Most important benefits for workstation users to upgrade to entry-level HPC are:

1. Enormous economic benefits (Alcoa reported a 98% cost reduction in product testing).

2. Optimized processes (Procter & Gamble saved millions by optimizing its Pringles line).

3. Shorter time to market (PING Golf cut its design cycle time by 68%).

  • The most severe barriers to HPC adoption of workstation users are: lack of application software, lack of sufficient talent, and cost constraints.

Therefore, buying their own high-performance multi-server clusters to speed up each simulation run, do more frequent CAE simulation runs, or to analyze larger geometries, finer meshes/more cells, or better physics, are simply out of reach for many companies. And here is where HPC in the Cloud could really level the playing field.

A Convincing CFD Use Case Scenario – Private versus Public Resources

It is quite common for R&D teams to follow an iterative CAD/CAE process for designing or modifying a product’s geometry by gradually modifying the physics (application software, set of input parameters, initial flow field), and performing many simulation runs on the engineer’s workstation to find improvements.

To illustrate our scenario, suppose the engineer selects a discrete granularity of 20 million cells (or finite elements) for his analysis and composes an application batch job which then runs 15 hours on his high-end $10K workstation (these days e.g., Intel Xeon E5-2670 dual 8-core, Sandy Bridge), which has just enough memory to host the whole problem. This means one job a day, five jobs a week. Because the workstation runs at its limits, there is no way to speed up these jobs, to run larger geometries and more complex physics; or any opportunity to improve the quality of the results.

Suppose the engineer believes that the quality of the simulation results would improve from a finer mesh decomposition, say by a moderate factor of 2 in each (x,y,and z) dimension, resulting in about 2*2*2 = 8 times more cells (or finite elements), 120 million, 8 times more memory need, and at least 8 times longer runs (8 * 15 = 120 hours) of the batch job on the workstation. But again since the workstation is the limiting factor there no way to perform such a job his workstation due to its memory and computing power limitations. And with the multi-server HPC being out of reach, our engineer has no where to turn.

Cloud computing offers a potential solution: no upfront capital expenditure, no lengthy and tedious purchasing procedure, no management approval necessary, no deep HPC expertise needed.

Getting back to our scenario above, and focusing on Amazon’s EC2 Compute Cluster Instances (CCIs) as an example, we find the Eight Extra Large CCIs comparable to our engineer’s workstation, each CCI equipped with dual 8-core Intel Xeon E5-2670, at $2.40 per CCI per hour, on demand cost about $0.50 on the Amazon spot market.

Submitting now the above mentioned 15-hour job to EC2 and running it on 20 CCIs would reduce the run time of the job to about 1 hour, at a total cost of 20 CCIs x 1 hour x $2.40 = $48.00 for the whole job. Let’s not forget the cost for the application licenses on demand, for 20 CCIs for 1 hour. It’s important to point out that we assume the software is able to make use of the available CPU’s and process the job in many parallel pieces efficiently, which is a quite safe assumption for CFD software.

Let’s now return to our scenario and see what happens if we apply the finer mesh decomposition, which will increase the number of cells by a factor of 8. On the workstation this job would run in 8×15= 120 hours (5 days) and on 20 CCI instances on EC2 the runtime would be around 8 hours for the cost of 8 hours x 20 instances x $2.40 per instance= $384.

This simple example demonstrates that a much bigger job, which was impossible to execute on a workstation, can be run on Cloud resources in a short time and at a reasonable price.

What does this all mean for the manufacturer and for the ISV?

Let’s look at the benefits of this new computing paradigm for the stakeholders. One important remark upfront: we don’t mean to suggest replacing the engineer’s workstation and ISV’s software license on that workstation with Cloud resources. These tools will continue to be invaluable for the engineer and his R&D projects. We view Cloud computing and on-demand software licenses as an additional, complementary benefit for the engineer’s daily work.

The Engineer’s benefits:

The benefits for the engineer in using Cloud resources have been demonstrated above: faster execution of the job; execution of the job in the Cloud while preparing the next job on his workstation; running more than one job at a time with (slightly) different parameters thus increasing the quality of the results; and running bigger jobs with finer geometries and better physics thus further increasing the quality of the results.

The ISV’s benefits:

An engineer turning to the Cloud because of the just mentioned scenarios and benefits will (have to) continue to use the application software license on his workstation, for business as usual, as demanded by the typical and standard R&D scenarios described above.

The Cloud enables additional opportunities for the engineer to do more, faster, better. For all these additional scenarios, the ISV sells additional licenses, on demand, paid by the hour, resulting in additional business, on top of the workstation license business.

Even for those companies which already have an HPC cluster in their computing center, bursting into a Cloud offers much higher efficiency and flexibility for the engineers, and results in additional license-on-demand business for the ISV.

Finally, ISVs offering application software on demand are able to attract new customers who are just getting started with computer simulations, and who would never think of buying a license for just a few simulations.

For all these good reasons, I strongly doubt that there will be any negative impact from cloud-based on-demand licensing for ISVs, as it is sometimes concluded in our community. On the contrary, if introduced with care, e.g., with some early incentives for their existing customer base, ISVs will be able to add new business right from the start.

What are we waiting for?

To explore the Cloud computing model in CAE, we have developed an experiment that brings together the four major stakeholders: manufacturing end users, resource providers, software providers, and subject matter experts.

The idea is to better understand the end-to-end process of using remote resources available in high-performance technical computing centers and in clouds, and figure out how to achieve the benefits of service-based delivery. We believe the technology is not the challenge anymore; rather the challenge is bringing the right people together.

The experiment is scheduled to begin later in July and will run for three months. At that point, the results will be made publicly available to the manufacturing and the HPC community.

Anyone interested in participating at this experiment can register at http://www.hpcexperiment.com. More information about the experiment is available at http://www.hpcwire.com/hpcwire/2012-06-28/the_uber-cloud_experiment.html.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Tribute: Dr. Bob Borchers, 1936-2018

June 21, 2018

Dr. Bob Borchers, a leader in the high performance computing community for decades, passed away peacefully in Maui, Hawaii, on June 7th. His memorial service will be held on June 22nd in Reston, Virginia. Dr. Borchers Read more…

By Ann Redelfs

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between the hourly commentary on Brexit, the FIFA World Cup, or US pr Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly but later versions of the Bulldozer line not so much. Fast f Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Preview the World’s Smartest Supercomputer at ISC 2018

Introducing an accelerated IT infrastructure for HPC & AI workloads Read more…

Why Student Cluster Competitions are Better than World Cup

June 21, 2018

My last article about the ISC18 Student Cluster Competition, titled “World Cup is Lame Compared to This Competition”, may have implied that I believe Student Cluster Competitions are better than World Cup soccer in s Read more…

By Dan Olds

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between t Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chair Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This