Too Big to FLOP?

By Gary Johnson

July 19, 2012

At the cutting edge of HPC, bigger has always been seen as better and user demand has been the justification. However, as we now grapple with trans-petaflop machines and strive for exaflop ones, is evidence emerging that contradicts these notions? Might computers be getting too big to effectively serve up those FLOPS? Are the applications end users really demanding more? If our premises are no longer valid, perhaps we should rethink our HPC game plan.

Public procurement premises

The early machines in a new generation of high-end computers are almost always procured with public money. They are purchased, not simply to drive innovation in the computer industry, but principally to satisfy the perceived needs of researchers and applications developers whose science and engineering codes are straining the limits of existing computers and require more capable ones to succeed.

The rationale goes something like this:

  • Progress in field X is crucially important to: the advancement of science, economic competitiveness, or national security (take your pick)

  • Applications end users in field X assert that they cannot reach their objectives without better modeling and simulation

  • Better modeling and simulation will require some or all of: more elaborate codes, faster execution, more memory, more runs, and longer run times

  • These modeling and simulation objectives imply the need for a bigger and faster computer

This rationale has served us well for many decades. In less than 50 years, our highest-end computers have grown in performance from megaflops to tens of petaflops, a factor of more than 10,000,000,000.

Serious money

Reliable figures for the cost of machines at the top of the TOP500 list are hard to come by. Sometimes the numbers cited include development costs, sometimes they don’t. Sometimes the numbers are closer to the cost of materials than they are to a “market price” for a saleable product. Sometimes the numbers are somewhere in between these extremes, representing a discounted price to a favored customer and/or development partner. These caveats notwithstanding, it is clear that being at the top of the TOP500 list involves pretty serious money. A few months ago, Dan Olds writing in The Register, tried to identify “early-life prices” for machines that broke through various FLOP levels. Here are his results:

Note that the cost cited for the K Computer does include its development. The latest TOP500 list is topped by an IBM Blue Gene/Q system, named Sequoia, sited at Lawrence Livermore National Laboratory. Its Linpack performance is a bit over 16 petaflops. Sequoia’s cost has not been made public, but based on available information, a reasonable guess appears to be in the range of $210M to $230M. (If anyone has a better guess, please let us know.)

Above, we’ve plotted the cost history of these top computers, including Sequoia. To the data, we’ve added a couple of trend lines. The red trend line take in account all of the systems, while the blue one excludes the CDC 6600 and the K Computer as outliers. From the trends, it seems to be a pretty reasonable guess that by 2020 the top computer will cost $300 to $400 million US dollars, excluding development costs. By 2030, that number will have risen to more than half a billion dollars.

Given current and prospective future global financial constraints, it is not hard to imagine that the procurement premises used to justify public expenditures for top computers may come under much closer scrutiny than we’ve previously experienced. How will those premises fare?

Is bigger better?

Those who advocate for and fund the top machines generally depict them as tools for breakthroughs that could not possibly be achieved by other means – or lesser computers. Thus is born the idea of the “hero run,” where a single applications team uses the entire computer to do something amazing.

Reality differs from this image. Publicly funded high-end computers – including the top machines – are generally placed in environments where they are shared by a number of users. Depending on site policies, there may be anywhere from a few hundred to several thousand users on these machines. Furthermore, these computers are seldom devoted in their entirety to a single application run. When they are, that run is likely to be Linpack benchmark to qualify for the next edition of the TOP500 list.

So, if you do the math, no one really sees the full strength of the top computer. Users just get a slice of the machine, one that is probably equivalent to full use of some computer much lower on the TOP500 list (and much cheaper).

Failure is an Option

With trans-petaflop machines, failure (or “system interrupt”, if you prefer) is not only an option but also a fairly common occurrence. Data on the Mean Time Between Interrupts (MTBI) is not usually made public, but there are ways to infer that that interval is short enough to be a serious issue.

At the recent International Supercomputing Conference (ISC’12), Jack Dongarra gave a talk entitled Reduced Linpack to Keep the Run Time Manageable for Future TOP500 Lists. In it, he discussed the need to modify the Linpack benchmark so that it will execute in less time. The need for such a modification was clearly illustrated in his visuals. The table below provides the Linpack benchmark execution time for the top computer, over the history of the TOP500 list:

Note that recent top machines have taken 20 to 30 hours to complete the benchmark. The trend for Linpack run times, as presented by Dongarra, is illustrated below.

If this trend were to hold, running the benchmark on an exaflop machine would take almost six days. What is usually left unsaid is that 20 to 30 hours may already be in the MTBI range for the top computers. So in an attempt to get a complete measurement before the system encounters an interrupt, the benchmarking sessions may consist of several runs. Under such circumstances, running the current benchmark for six days is clearly out of the question.

What has this got to do with the real world of science and engineering applications?  Recall the mantra of the Linpack benchmark: If you can’t run Linpack, you don’t have a prayer of running your real application. So, if Linpack is already in trouble because of MTBI issues, how is your application going to fare?

Thus, because of failure issues which are not broadly discussed, bigger machines may not be faster in terms of time to completion for real applications.

Do applications users care?

The most fundamental premise underpinning the case for public procurements of top machines is that the applications end users care. No matter how difficult these machines may be to use, they are needed and wanted. Science and engineering cannot make breakthroughs without them. However, there are a couple of indicators that contradict this view of users.

At the beginning of its consideration of an exascale initiative, The US Department of Energy’s Office of Science conducted an extensive series of workshops with applications end users from various disciplines. The reports and other documents from this Scientific Grand Challenges Workshop Series show mixed results.

The fundamental question asked was: How does your science require exascale computing for its advancement?  The groups of applications users generally avoided answering that question and responded instead with information about how they would make use of an exascale computer if they had access to one. This difference may seem subtle, but it indicates that there was no generally perceived need among applications end users for exascale computing. Would they take it, if offered?  Of course!

A more blatant, albeit more anecdotal, indicator came during a Think Tank panel session at ISC’12. The topic for panelist consideration was the end user’s perspective on the TOP500 List – 20 Years Later. Representing this point of view were three distinguished HPC managers – from Germany, Japan the US. From left to right in the photo below, they are:

  • Michael Resch –  Director, High Performance Computing Center, University of Stuttgart
  • Satoshi Matsuoka – Professor, Global Scientific Information and Computing Center & Department of Mathematical and Computing Sciences, Tokyo Institute of Technology

  • Dona Crawford – Associate Director for Computation at Lawrence Livermore National Laboratory

That’s me, Gary Johnson, on the right, moderating the panel. To my knowledge, there is no written transcript of the panel, but you can find video of it at the ISC Events Channel on YouTube.

After some discussion of a center manager’s viewpoint on the TOP500 list, I asked the panelists how their applications end users felt about it (the question was posed at about 15:50 minutes into the video). You can evaluate their responses for yourself, but what I heard was that, beyond perhaps some feeling of pride associated with running code on a top computer, the end users didn’t care about where their computer was on the list. Apparently, placement on the TOP500 has little effect on end user behavior. How does this reconcile with the idea that applications end users need top computers to advance their work?  It appears that most of them are content to stay put at their “home” center and use whatever computing resources are available, rather than seeking out the biggest and best.

Whither Big Iron…?

Both big computers and competition to build bigger ones are here to stay. So, the comments made here and the questions posed are not meant to cast doubt on the eventuality of exaflop machines and those beyond. Rather, they are meant as a constructive critique of the standard rationale that we use to advocate high-end computing and to convince governments to spend public money on it. While Big Iron may be here to stay, the current “too big to flop” rationale that underpins these machines is clearly under stress.

It is prudent to periodically question one’s premises. If they cease to be valid, the conclusions that flow from them may be dubious. Right now, the premises underpinning the public procurement of top computers appear to have lost much of their validity. Perhaps we, the HPC community, should get out ahead of this situation, rethink our case, and then move forward on more solid ground.

If you have a different interpretation of events or the applications end users’ communal psyche, please let us know. In any case, we’d appreciate hearing your thoughts on how best to move HPC forward.

—–

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.


Related Articles

HPC Lists We’d Like to See

Jailbreaking HPC

Number Crunching, Data Crunching and Energy Efficiency: the HPC Hat Trick

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire