Too Big to FLOP?

By Gary Johnson

July 19, 2012

At the cutting edge of HPC, bigger has always been seen as better and user demand has been the justification. However, as we now grapple with trans-petaflop machines and strive for exaflop ones, is evidence emerging that contradicts these notions? Might computers be getting too big to effectively serve up those FLOPS? Are the applications end users really demanding more? If our premises are no longer valid, perhaps we should rethink our HPC game plan.

Public procurement premises

The early machines in a new generation of high-end computers are almost always procured with public money. They are purchased, not simply to drive innovation in the computer industry, but principally to satisfy the perceived needs of researchers and applications developers whose science and engineering codes are straining the limits of existing computers and require more capable ones to succeed.

The rationale goes something like this:

  • Progress in field X is crucially important to: the advancement of science, economic competitiveness, or national security (take your pick)

  • Applications end users in field X assert that they cannot reach their objectives without better modeling and simulation

  • Better modeling and simulation will require some or all of: more elaborate codes, faster execution, more memory, more runs, and longer run times

  • These modeling and simulation objectives imply the need for a bigger and faster computer

This rationale has served us well for many decades. In less than 50 years, our highest-end computers have grown in performance from megaflops to tens of petaflops, a factor of more than 10,000,000,000.

Serious money

Reliable figures for the cost of machines at the top of the TOP500 list are hard to come by. Sometimes the numbers cited include development costs, sometimes they don’t. Sometimes the numbers are closer to the cost of materials than they are to a “market price” for a saleable product. Sometimes the numbers are somewhere in between these extremes, representing a discounted price to a favored customer and/or development partner. These caveats notwithstanding, it is clear that being at the top of the TOP500 list involves pretty serious money. A few months ago, Dan Olds writing in The Register, tried to identify “early-life prices” for machines that broke through various FLOP levels. Here are his results:

Note that the cost cited for the K Computer does include its development. The latest TOP500 list is topped by an IBM Blue Gene/Q system, named Sequoia, sited at Lawrence Livermore National Laboratory. Its Linpack performance is a bit over 16 petaflops. Sequoia’s cost has not been made public, but based on available information, a reasonable guess appears to be in the range of $210M to $230M. (If anyone has a better guess, please let us know.)

Above, we’ve plotted the cost history of these top computers, including Sequoia. To the data, we’ve added a couple of trend lines. The red trend line take in account all of the systems, while the blue one excludes the CDC 6600 and the K Computer as outliers. From the trends, it seems to be a pretty reasonable guess that by 2020 the top computer will cost $300 to $400 million US dollars, excluding development costs. By 2030, that number will have risen to more than half a billion dollars.

Given current and prospective future global financial constraints, it is not hard to imagine that the procurement premises used to justify public expenditures for top computers may come under much closer scrutiny than we’ve previously experienced. How will those premises fare?

Is bigger better?

Those who advocate for and fund the top machines generally depict them as tools for breakthroughs that could not possibly be achieved by other means – or lesser computers. Thus is born the idea of the “hero run,” where a single applications team uses the entire computer to do something amazing.

Reality differs from this image. Publicly funded high-end computers – including the top machines – are generally placed in environments where they are shared by a number of users. Depending on site policies, there may be anywhere from a few hundred to several thousand users on these machines. Furthermore, these computers are seldom devoted in their entirety to a single application run. When they are, that run is likely to be Linpack benchmark to qualify for the next edition of the TOP500 list.

So, if you do the math, no one really sees the full strength of the top computer. Users just get a slice of the machine, one that is probably equivalent to full use of some computer much lower on the TOP500 list (and much cheaper).

Failure is an Option

With trans-petaflop machines, failure (or “system interrupt”, if you prefer) is not only an option but also a fairly common occurrence. Data on the Mean Time Between Interrupts (MTBI) is not usually made public, but there are ways to infer that that interval is short enough to be a serious issue.

At the recent International Supercomputing Conference (ISC’12), Jack Dongarra gave a talk entitled Reduced Linpack to Keep the Run Time Manageable for Future TOP500 Lists. In it, he discussed the need to modify the Linpack benchmark so that it will execute in less time. The need for such a modification was clearly illustrated in his visuals. The table below provides the Linpack benchmark execution time for the top computer, over the history of the TOP500 list:

Note that recent top machines have taken 20 to 30 hours to complete the benchmark. The trend for Linpack run times, as presented by Dongarra, is illustrated below.

If this trend were to hold, running the benchmark on an exaflop machine would take almost six days. What is usually left unsaid is that 20 to 30 hours may already be in the MTBI range for the top computers. So in an attempt to get a complete measurement before the system encounters an interrupt, the benchmarking sessions may consist of several runs. Under such circumstances, running the current benchmark for six days is clearly out of the question.

What has this got to do with the real world of science and engineering applications?  Recall the mantra of the Linpack benchmark: If you can’t run Linpack, you don’t have a prayer of running your real application. So, if Linpack is already in trouble because of MTBI issues, how is your application going to fare?

Thus, because of failure issues which are not broadly discussed, bigger machines may not be faster in terms of time to completion for real applications.

Do applications users care?

The most fundamental premise underpinning the case for public procurements of top machines is that the applications end users care. No matter how difficult these machines may be to use, they are needed and wanted. Science and engineering cannot make breakthroughs without them. However, there are a couple of indicators that contradict this view of users.

At the beginning of its consideration of an exascale initiative, The US Department of Energy’s Office of Science conducted an extensive series of workshops with applications end users from various disciplines. The reports and other documents from this Scientific Grand Challenges Workshop Series show mixed results.

The fundamental question asked was: How does your science require exascale computing for its advancement?  The groups of applications users generally avoided answering that question and responded instead with information about how they would make use of an exascale computer if they had access to one. This difference may seem subtle, but it indicates that there was no generally perceived need among applications end users for exascale computing. Would they take it, if offered?  Of course!

A more blatant, albeit more anecdotal, indicator came during a Think Tank panel session at ISC’12. The topic for panelist consideration was the end user’s perspective on the TOP500 List – 20 Years Later. Representing this point of view were three distinguished HPC managers – from Germany, Japan the US. From left to right in the photo below, they are:

  • Michael Resch –  Director, High Performance Computing Center, University of Stuttgart
  • Satoshi Matsuoka – Professor, Global Scientific Information and Computing Center & Department of Mathematical and Computing Sciences, Tokyo Institute of Technology

  • Dona Crawford – Associate Director for Computation at Lawrence Livermore National Laboratory

That’s me, Gary Johnson, on the right, moderating the panel. To my knowledge, there is no written transcript of the panel, but you can find video of it at the ISC Events Channel on YouTube.

After some discussion of a center manager’s viewpoint on the TOP500 list, I asked the panelists how their applications end users felt about it (the question was posed at about 15:50 minutes into the video). You can evaluate their responses for yourself, but what I heard was that, beyond perhaps some feeling of pride associated with running code on a top computer, the end users didn’t care about where their computer was on the list. Apparently, placement on the TOP500 has little effect on end user behavior. How does this reconcile with the idea that applications end users need top computers to advance their work?  It appears that most of them are content to stay put at their “home” center and use whatever computing resources are available, rather than seeking out the biggest and best.

Whither Big Iron…?

Both big computers and competition to build bigger ones are here to stay. So, the comments made here and the questions posed are not meant to cast doubt on the eventuality of exaflop machines and those beyond. Rather, they are meant as a constructive critique of the standard rationale that we use to advocate high-end computing and to convince governments to spend public money on it. While Big Iron may be here to stay, the current “too big to flop” rationale that underpins these machines is clearly under stress.

It is prudent to periodically question one’s premises. If they cease to be valid, the conclusions that flow from them may be dubious. Right now, the premises underpinning the public procurement of top computers appear to have lost much of their validity. Perhaps we, the HPC community, should get out ahead of this situation, rethink our case, and then move forward on more solid ground.

If you have a different interpretation of events or the applications end users’ communal psyche, please let us know. In any case, we’d appreciate hearing your thoughts on how best to move HPC forward.

—–

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.


Related Articles

HPC Lists We’d Like to See

Jailbreaking HPC

Number Crunching, Data Crunching and Energy Efficiency: the HPC Hat Trick

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Simulations Validate NASA Crash Testing

February 17, 2020

Car crash simulation is already a challenging supercomputing task, requiring pinpoint estimation of how hundreds of components interact with turbulent forces and human bodies. Spacecraft crash simulation is far more diff Read more…

By Oliver Peckham

What’s New in HPC Research: Quantum Clouds, Interatomic Models, Genetic Algorithms & More

February 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or at least, pull off the cloud HPC equivalent. As part of thei Read more…

By Oliver Peckham

ORNL Team Develops AI-based Cancer Text Mining Tool on Summit

February 13, 2020

A group of Oak Ridge National Laboratory researchers working on the Summit supercomputer has developed a new neural network tool for fast extraction of information from cancer pathology reports to speed research and clin Read more…

By John Russell

Nature Serves up Another Challenge to Quantum Computing?

February 13, 2020

Just when you thought it was safe to assume quantum computing – though distant – would eventually succumb to clever technology, another potentially confounding factor pops up. It’s the Heisenberg Limit (HL), close Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Researchers Enlist Three Supercomputers to Apply Deep Learning to Extreme Weather

February 12, 2020

When it comes to extreme weather, an errant forecast can have serious effects. While advance warning can give people time to prepare for the weather as it did with the polar vortex last year, the absence of accurate adva Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Intel Stopping Nervana Development to Focus on Habana AI Chips

February 3, 2020

Just two months after acquiring Israeli AI chip start-up Habana Labs for $2 billion, Intel is stopping development of its existing Nervana neural network proces Read more…

By John Russell

Lise Supercomputer, Part of HLRN-IV, Begins Operations

January 29, 2020

The second phase of the build-out of HLRN-IV – the planned 16 peak-petaflops supercomputer serving the North-German Supercomputing Alliance (HLRN) – is unde Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This