Too Big to FLOP?

By Gary Johnson

July 19, 2012

At the cutting edge of HPC, bigger has always been seen as better and user demand has been the justification. However, as we now grapple with trans-petaflop machines and strive for exaflop ones, is evidence emerging that contradicts these notions? Might computers be getting too big to effectively serve up those FLOPS? Are the applications end users really demanding more? If our premises are no longer valid, perhaps we should rethink our HPC game plan.

Public procurement premises

The early machines in a new generation of high-end computers are almost always procured with public money. They are purchased, not simply to drive innovation in the computer industry, but principally to satisfy the perceived needs of researchers and applications developers whose science and engineering codes are straining the limits of existing computers and require more capable ones to succeed.

The rationale goes something like this:

  • Progress in field X is crucially important to: the advancement of science, economic competitiveness, or national security (take your pick)

  • Applications end users in field X assert that they cannot reach their objectives without better modeling and simulation

  • Better modeling and simulation will require some or all of: more elaborate codes, faster execution, more memory, more runs, and longer run times

  • These modeling and simulation objectives imply the need for a bigger and faster computer

This rationale has served us well for many decades. In less than 50 years, our highest-end computers have grown in performance from megaflops to tens of petaflops, a factor of more than 10,000,000,000.

Serious money

Reliable figures for the cost of machines at the top of the TOP500 list are hard to come by. Sometimes the numbers cited include development costs, sometimes they don’t. Sometimes the numbers are closer to the cost of materials than they are to a “market price” for a saleable product. Sometimes the numbers are somewhere in between these extremes, representing a discounted price to a favored customer and/or development partner. These caveats notwithstanding, it is clear that being at the top of the TOP500 list involves pretty serious money. A few months ago, Dan Olds writing in The Register, tried to identify “early-life prices” for machines that broke through various FLOP levels. Here are his results:

Note that the cost cited for the K Computer does include its development. The latest TOP500 list is topped by an IBM Blue Gene/Q system, named Sequoia, sited at Lawrence Livermore National Laboratory. Its Linpack performance is a bit over 16 petaflops. Sequoia’s cost has not been made public, but based on available information, a reasonable guess appears to be in the range of $210M to $230M. (If anyone has a better guess, please let us know.)

Above, we’ve plotted the cost history of these top computers, including Sequoia. To the data, we’ve added a couple of trend lines. The red trend line take in account all of the systems, while the blue one excludes the CDC 6600 and the K Computer as outliers. From the trends, it seems to be a pretty reasonable guess that by 2020 the top computer will cost $300 to $400 million US dollars, excluding development costs. By 2030, that number will have risen to more than half a billion dollars.

Given current and prospective future global financial constraints, it is not hard to imagine that the procurement premises used to justify public expenditures for top computers may come under much closer scrutiny than we’ve previously experienced. How will those premises fare?

Is bigger better?

Those who advocate for and fund the top machines generally depict them as tools for breakthroughs that could not possibly be achieved by other means – or lesser computers. Thus is born the idea of the “hero run,” where a single applications team uses the entire computer to do something amazing.

Reality differs from this image. Publicly funded high-end computers – including the top machines – are generally placed in environments where they are shared by a number of users. Depending on site policies, there may be anywhere from a few hundred to several thousand users on these machines. Furthermore, these computers are seldom devoted in their entirety to a single application run. When they are, that run is likely to be Linpack benchmark to qualify for the next edition of the TOP500 list.

So, if you do the math, no one really sees the full strength of the top computer. Users just get a slice of the machine, one that is probably equivalent to full use of some computer much lower on the TOP500 list (and much cheaper).

Failure is an Option

With trans-petaflop machines, failure (or “system interrupt”, if you prefer) is not only an option but also a fairly common occurrence. Data on the Mean Time Between Interrupts (MTBI) is not usually made public, but there are ways to infer that that interval is short enough to be a serious issue.

At the recent International Supercomputing Conference (ISC’12), Jack Dongarra gave a talk entitled Reduced Linpack to Keep the Run Time Manageable for Future TOP500 Lists. In it, he discussed the need to modify the Linpack benchmark so that it will execute in less time. The need for such a modification was clearly illustrated in his visuals. The table below provides the Linpack benchmark execution time for the top computer, over the history of the TOP500 list:

Note that recent top machines have taken 20 to 30 hours to complete the benchmark. The trend for Linpack run times, as presented by Dongarra, is illustrated below.

If this trend were to hold, running the benchmark on an exaflop machine would take almost six days. What is usually left unsaid is that 20 to 30 hours may already be in the MTBI range for the top computers. So in an attempt to get a complete measurement before the system encounters an interrupt, the benchmarking sessions may consist of several runs. Under such circumstances, running the current benchmark for six days is clearly out of the question.

What has this got to do with the real world of science and engineering applications?  Recall the mantra of the Linpack benchmark: If you can’t run Linpack, you don’t have a prayer of running your real application. So, if Linpack is already in trouble because of MTBI issues, how is your application going to fare?

Thus, because of failure issues which are not broadly discussed, bigger machines may not be faster in terms of time to completion for real applications.

Do applications users care?

The most fundamental premise underpinning the case for public procurements of top machines is that the applications end users care. No matter how difficult these machines may be to use, they are needed and wanted. Science and engineering cannot make breakthroughs without them. However, there are a couple of indicators that contradict this view of users.

At the beginning of its consideration of an exascale initiative, The US Department of Energy’s Office of Science conducted an extensive series of workshops with applications end users from various disciplines. The reports and other documents from this Scientific Grand Challenges Workshop Series show mixed results.

The fundamental question asked was: How does your science require exascale computing for its advancement?  The groups of applications users generally avoided answering that question and responded instead with information about how they would make use of an exascale computer if they had access to one. This difference may seem subtle, but it indicates that there was no generally perceived need among applications end users for exascale computing. Would they take it, if offered?  Of course!

A more blatant, albeit more anecdotal, indicator came during a Think Tank panel session at ISC’12. The topic for panelist consideration was the end user’s perspective on the TOP500 List – 20 Years Later. Representing this point of view were three distinguished HPC managers – from Germany, Japan the US. From left to right in the photo below, they are:

  • Michael Resch –  Director, High Performance Computing Center, University of Stuttgart
  • Satoshi Matsuoka – Professor, Global Scientific Information and Computing Center & Department of Mathematical and Computing Sciences, Tokyo Institute of Technology

  • Dona Crawford – Associate Director for Computation at Lawrence Livermore National Laboratory

That’s me, Gary Johnson, on the right, moderating the panel. To my knowledge, there is no written transcript of the panel, but you can find video of it at the ISC Events Channel on YouTube.

After some discussion of a center manager’s viewpoint on the TOP500 list, I asked the panelists how their applications end users felt about it (the question was posed at about 15:50 minutes into the video). You can evaluate their responses for yourself, but what I heard was that, beyond perhaps some feeling of pride associated with running code on a top computer, the end users didn’t care about where their computer was on the list. Apparently, placement on the TOP500 has little effect on end user behavior. How does this reconcile with the idea that applications end users need top computers to advance their work?  It appears that most of them are content to stay put at their “home” center and use whatever computing resources are available, rather than seeking out the biggest and best.

Whither Big Iron…?

Both big computers and competition to build bigger ones are here to stay. So, the comments made here and the questions posed are not meant to cast doubt on the eventuality of exaflop machines and those beyond. Rather, they are meant as a constructive critique of the standard rationale that we use to advocate high-end computing and to convince governments to spend public money on it. While Big Iron may be here to stay, the current “too big to flop” rationale that underpins these machines is clearly under stress.

It is prudent to periodically question one’s premises. If they cease to be valid, the conclusions that flow from them may be dubious. Right now, the premises underpinning the public procurement of top computers appear to have lost much of their validity. Perhaps we, the HPC community, should get out ahead of this situation, rethink our case, and then move forward on more solid ground.

If you have a different interpretation of events or the applications end users’ communal psyche, please let us know. In any case, we’d appreciate hearing your thoughts on how best to move HPC forward.

—–

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.


Related Articles

HPC Lists We’d Like to See

Jailbreaking HPC

Number Crunching, Data Crunching and Energy Efficiency: the HPC Hat Trick

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire