Australia Goes on Spending Spree in Supercomputing Market

By Michael Feldman

July 26, 2012

While governments in much of the rest of the world are wringing their hands over stagnant or shrinking R&D budgets, Australia is buying up HPC machinery like there is no tomorrow. Just this week, Cray, IBM, and SGI announced supercomputing deals that would send the vendors’ latest and greatest HPC equipment Down Under. In this case, the three systems are headed to various research facilities in New South Wales and Western Australia.

The biggest new Aussie system, by far, is the upcoming Cray “Cascade” supercomputer destined for the Pawsey Centre in Perth, Western Australia. That system will also include an unspecified amount of Sonexion storage, Cray’s new Lustre-based line that they added to their portfolio last year. According to Cray, the total deal, including products and services, will amount to over $21 million.

Cascade is Cray’s next-generation supercomputer, which is due out in 2013. It will be based on the upcoming Aries interconnect and support Intel processors – Xeon CPUs as well as the new Xeon Phi (MIC) manycore coprocessors. The Pawsey machine will incorporate both chips at least in the second phase of its deployment in 2014.

That system is expected to deliver 1.2 petaflops, which would make it about 40 percent more powerful than “Avoca,” Australia’s current top supercomputer. According to the Pawsey announcement, the machine will use “a combination of Intel Ivy Bridge, Haswell and MIC processors, although the precise configuration is still to be determined.” The first iteration of the system, scheduled to be installed in 2013, will top out at 300 teraflops, which likely means no coprocessor acceleration.

Astronomers will use the Pawsey Cascade system to analyze data collected by the Australian Square Kilometer Array Pathfinder (ASKAP) and Murchison Widefield Array (MWA) radio telescopes. Besides sifting through astronomical data, the system will also be available to support research projects in other areas, including geosciences, nanotechnology and biosciences.

The Pawsey Supercomputing Centre was set up three years ago to support the SKA (Square Kilometre Array) radio telescope project, as well as a number of other scientific programs. The center is owned by Australia’s major public research agency, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), and is managed by iVEC, a joint supercomputing consortium that includes CSIRO, the Western Australia government, and a number of universities. Back in 2009, the feds gave $80 million to iVEC to set up the facility, which is now known as the Pawsey Centre. A big chunk of that funding is now going to the Cascade deployment.

Last September, iVEC acquired an SGI cluster, known as Fornax, also intended for radio astronomy support and general science duty. At 96 nodes, that system is much less powerful than the upcoming Cascade system. Each Fornax node contains two 6-core Intel Xeon Westmere CPUs and an NVIDIA Tesla GPU. Although the Fornax procurement took place last fall, the system apparently has yet to be deployed.

The machines currently up and running at Pawsey include HP and SGI clusters. The HP machine is an 87 teraflop ProLiant Blade system with 9600 cores of Westmere-generation CPUs, stitched together with QDR InfiniBand. It sports half a petabyte of external storage. The SGI Altix 3700 Bx2 is an even smaller system made up of 192 CPUs, 366 GB of memory, and 12 TB of disk. At 1.2 petaflops, the upcoming Cascade system will increase Pawsey’s number crunching capacity by a factor of 10.

Radio telescope research has apparently become a growth industry Down Under. The second Australian supercomputer procurement announced this week is also slated to support the Murchison Widefield Array radio telescopes mentioned above. This machine is an IBM iDataPlex cluster and according to the press release will be used to “convert the radio waves into wide-field images of the sky that are unprecedented in clarity and detail.”

The iDataPlex machine is a dx360 M3 rackmount cluster, build for density and energy efficiency. Each node houses two Xeon Westmere-EP CPUs and up to 192 GB of RAM. The specific size and configuration for the Murchison machine was not specified, but according to the announcement the cluster will be capable of crunching about 50 terabytes of data per day at a rate of up to 8 gigabytes per second.

In this case, the supercomputer will be housed on-site at Murchison Radio Observatory, which is located about 700 km north of Perth in the Australian Outback. That will give the system quick access to the data collected by the 4,096 radio antennas at the facility, enabling the images to be processed in real-time. And even though the system is being deployed in Australia, the Murchison radio telescope work is supported by an international consortium, which also includes New Zealand, India, and the US.

The third new Aussie machine is an SGI cluster, and is headed to Sydney, on the other side of the continent. The system was procured by Intersect, a local non-profit group that provides IT services, including HPC, to public and private researchers in New South Wales.

At 33 teraflops, the SGI system is medium-sized by today’s standards. It consists of 100 nodes — 88 small compute nodes, 10 large ones, and 2 admin/system console nodes. All are of the dual-socket Sandy Bridge (Xeon E5-2600) persuasion, with 256 GB of memory on the large nodes and 64 GB on the small ones. Everything is hooked together with QDR InfiniBand. The procurement also includes 101 TB of storage.

According to the announcement, the new cluster will support research in areas such as quantum chemistry, computational chemistry, chemical engineering, climate science, mechanical engineering, bioinformatics and physics. In this case, no mention was made of radio telescope work, most of which is located in Western Australia.

It was probably just a coincidence that these three HPC deals were announced a few days apart. Australia doesn’t have the wherewithal to ramp up its HPC capability and become a world leader in supercomputing anytime soon. With an R&D budget about 1/20th the size of the US, the country can only do so much.

However compared to much of the world, Australia is in an enviable position right now. The economy there is enjoying solid and sustained growth, with low unemployment, low interest rates, manageable debt, and a nice investment pipeline. Even a slowing economy in China, a recessionary environment in Europe, and an uneven recovery in the US are unlikely faze the Australians very much. If there was ever a time to gain some ground in supercomputing, this would be it.


Related articles

Australian Supercomputer Simulates Common Cold’s Susceptibility to New Drug

Another Super for Aussie Research

Two Countries to Host Square Kilometre Array

Astronomers Look to Exascale Computing to Uncover Mysteries of the Universe

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Leading Solution Providers

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This