Australia Goes on Spending Spree in Supercomputing Market

By Michael Feldman

July 26, 2012

While governments in much of the rest of the world are wringing their hands over stagnant or shrinking R&D budgets, Australia is buying up HPC machinery like there is no tomorrow. Just this week, Cray, IBM, and SGI announced supercomputing deals that would send the vendors’ latest and greatest HPC equipment Down Under. In this case, the three systems are headed to various research facilities in New South Wales and Western Australia.

The biggest new Aussie system, by far, is the upcoming Cray “Cascade” supercomputer destined for the Pawsey Centre in Perth, Western Australia. That system will also include an unspecified amount of Sonexion storage, Cray’s new Lustre-based line that they added to their portfolio last year. According to Cray, the total deal, including products and services, will amount to over $21 million.

Cascade is Cray’s next-generation supercomputer, which is due out in 2013. It will be based on the upcoming Aries interconnect and support Intel processors – Xeon CPUs as well as the new Xeon Phi (MIC) manycore coprocessors. The Pawsey machine will incorporate both chips at least in the second phase of its deployment in 2014.

That system is expected to deliver 1.2 petaflops, which would make it about 40 percent more powerful than “Avoca,” Australia’s current top supercomputer. According to the Pawsey announcement, the machine will use “a combination of Intel Ivy Bridge, Haswell and MIC processors, although the precise configuration is still to be determined.” The first iteration of the system, scheduled to be installed in 2013, will top out at 300 teraflops, which likely means no coprocessor acceleration.

Astronomers will use the Pawsey Cascade system to analyze data collected by the Australian Square Kilometer Array Pathfinder (ASKAP) and Murchison Widefield Array (MWA) radio telescopes. Besides sifting through astronomical data, the system will also be available to support research projects in other areas, including geosciences, nanotechnology and biosciences.

The Pawsey Supercomputing Centre was set up three years ago to support the SKA (Square Kilometre Array) radio telescope project, as well as a number of other scientific programs. The center is owned by Australia’s major public research agency, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), and is managed by iVEC, a joint supercomputing consortium that includes CSIRO, the Western Australia government, and a number of universities. Back in 2009, the feds gave $80 million to iVEC to set up the facility, which is now known as the Pawsey Centre. A big chunk of that funding is now going to the Cascade deployment.

Last September, iVEC acquired an SGI cluster, known as Fornax, also intended for radio astronomy support and general science duty. At 96 nodes, that system is much less powerful than the upcoming Cascade system. Each Fornax node contains two 6-core Intel Xeon Westmere CPUs and an NVIDIA Tesla GPU. Although the Fornax procurement took place last fall, the system apparently has yet to be deployed.

The machines currently up and running at Pawsey include HP and SGI clusters. The HP machine is an 87 teraflop ProLiant Blade system with 9600 cores of Westmere-generation CPUs, stitched together with QDR InfiniBand. It sports half a petabyte of external storage. The SGI Altix 3700 Bx2 is an even smaller system made up of 192 CPUs, 366 GB of memory, and 12 TB of disk. At 1.2 petaflops, the upcoming Cascade system will increase Pawsey’s number crunching capacity by a factor of 10.

Radio telescope research has apparently become a growth industry Down Under. The second Australian supercomputer procurement announced this week is also slated to support the Murchison Widefield Array radio telescopes mentioned above. This machine is an IBM iDataPlex cluster and according to the press release will be used to “convert the radio waves into wide-field images of the sky that are unprecedented in clarity and detail.”

The iDataPlex machine is a dx360 M3 rackmount cluster, build for density and energy efficiency. Each node houses two Xeon Westmere-EP CPUs and up to 192 GB of RAM. The specific size and configuration for the Murchison machine was not specified, but according to the announcement the cluster will be capable of crunching about 50 terabytes of data per day at a rate of up to 8 gigabytes per second.

In this case, the supercomputer will be housed on-site at Murchison Radio Observatory, which is located about 700 km north of Perth in the Australian Outback. That will give the system quick access to the data collected by the 4,096 radio antennas at the facility, enabling the images to be processed in real-time. And even though the system is being deployed in Australia, the Murchison radio telescope work is supported by an international consortium, which also includes New Zealand, India, and the US.

The third new Aussie machine is an SGI cluster, and is headed to Sydney, on the other side of the continent. The system was procured by Intersect, a local non-profit group that provides IT services, including HPC, to public and private researchers in New South Wales.

At 33 teraflops, the SGI system is medium-sized by today’s standards. It consists of 100 nodes — 88 small compute nodes, 10 large ones, and 2 admin/system console nodes. All are of the dual-socket Sandy Bridge (Xeon E5-2600) persuasion, with 256 GB of memory on the large nodes and 64 GB on the small ones. Everything is hooked together with QDR InfiniBand. The procurement also includes 101 TB of storage.

According to the announcement, the new cluster will support research in areas such as quantum chemistry, computational chemistry, chemical engineering, climate science, mechanical engineering, bioinformatics and physics. In this case, no mention was made of radio telescope work, most of which is located in Western Australia.

It was probably just a coincidence that these three HPC deals were announced a few days apart. Australia doesn’t have the wherewithal to ramp up its HPC capability and become a world leader in supercomputing anytime soon. With an R&D budget about 1/20th the size of the US, the country can only do so much.

However compared to much of the world, Australia is in an enviable position right now. The economy there is enjoying solid and sustained growth, with low unemployment, low interest rates, manageable debt, and a nice investment pipeline. Even a slowing economy in China, a recessionary environment in Europe, and an uneven recovery in the US are unlikely faze the Australians very much. If there was ever a time to gain some ground in supercomputing, this would be it.


Related articles

Australian Supercomputer Simulates Common Cold’s Susceptibility to New Drug

Another Super for Aussie Research

Two Countries to Host Square Kilometre Array

Astronomers Look to Exascale Computing to Uncover Mysteries of the Universe

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This