Drug Discovery Looks for Its Next Fix

By Michael Feldman

July 31, 2012

Despite the highly profitable nature of the pharmaceutical business and the large amount of R&D money companies throw at creating new medicines, the pace of drug development is agonizingly slow.  Over the last few years, on average, less than two dozen new drugs have been introduced per year. One of the more promising technologies that could help speed up this process is supercomputing, which can be used not only to find better, safer drugs, but also to weed out those compounds that would eventually fail during the latter stages of drug trials.

According to a 2010 report in Nature, big pharma spends something like $50 billion per year on drug research and development. (To put that in perspective, that’s four to five times the total spend for high performance computing.) The Nature report estimates the price tag to bring a drug successfully to market is about $1.8 billion, and rising. A lot of that cost is due to the high attrition rate of drugs, which is caused by problems in absorption, distribution, metabolism, excretion and toxicity that gets uncovered during clinical trials.

Ideally, the drug makers would like know which compounds were going to succeed before they got to the expensive stages of development. That’s where high performance computing can help. The approach is to use molecular docking simulations on the computer to determine if the drug candidate can bind to the target protein associated with the disease. The general idea is to find the key (the small molecule drug) that fits in the lock (the protein).

AutoDock, probably the most common molecular modeling application for protein docking, is a one of the more popular software package used by the drug research community. It played a role in developing some of the more successful HIV drugs on the market. Fortunately, AutoDock is freely available under the GNU General Public License.

The trick is to do these docking simulations on a grand scale. Thanks to the power of modern HPC machines, millions of compounds can now be screened against a protein in a reasonable amount of time. In truth, that timeframe is dependent upon how many cores you can put to the task. For a typical medium-sized cluster that a drug company might have in-house, it would take several weeks to screen just a few thousand compounds against one target protein. To reach a more interactive workflow, you need a something approaching a petascale supercomputer.

But not necessarily an actual supercomputer. Compute clouds have turned out to be very suitable for this type of embarrassing parallel application. For example, in a recent test with 50,000 cores on Amazon’s cloud (provisioned by Cycle Computing), software was able to screen 21 million compounds against a protein target in less than three hours.

Real supercomputers work too. At Oak Ridge National Lab (ORNL), researchers there used 50,000 cores of Jaguar to screen about 10 million drug candidates in less than a day. Jeremy C. Smith, director of the Center for Molecular Biophysics at ORNL, believes his type level of virtual screening is the most cost-effective approach to turbo-charge the drug pipeline. But the real utility of the supercomputing approach, says Smith, is that it can also be used to screen out drugs with toxic side effects.

Toxicity is often hard to detect until it comes time to do clinical trials, the most expensive and time-consuming phase of drug development. Worse yet, sometimes toxicity is not discovered until after the drug has been approved and released into the wild. So identifying these compounds early has the potential to save lots of money, not to mention lives. As Smith says, “If drug candidates are going to fail, you want them to fail fast, fail cheap.”

At the molecular level, toxicity is caused by a drug binding to the wrong protein, one that is actually needed by the body, rather than just selectively binding to the protein causing the condition. The problem is humans have about a thousand proteins, so every potential compound needs to be checked against each one. When you’re working with millions of drug candidates, the job becomes overwhelming, even for the petaflop supercomputers of today. To support the toxicity problem, you’ll need an exascale machine, says Smith.

Besides screening for toxicity, the same exascale setup can be used to repurpose existing drugs for other medical conditions. That is, the drug docking software could use approved drugs as the starting point and try to match them against various target proteins know to cause disease. Right now, drug repurposing is typically discovered on a trial-and-error basis, but the increasing number of compounds that are now in this multiple-use category suggests this could be rich new area of drug discovery.

In any case, sheer compute power is not the complete answer. For starters, the software has to be scaled up to the level of the hardware, and on an exascale machine, that hardware is more than likely going to be based on heterogenous processors. But since the problem is easily parallelized (each docking operation can be performed independently of one another), at least the scaling aspect should be relatively easy to overcome.

The larger problem is that the molecular modeling software itself is imperfect. Unlike a true lock and key, proteins are dynamic structures, and the action of binding to a molecule changes their shape. Therefore, physics simulation is also required to get a more precise match.

AutoDock, for example, is only able to provide a crude match between drug and protein. To get higher fidelity docking, more compute-intensive algorithms are required. Researchers, like those at ORNL, often resort to more precise molecular dynamics codes after getting performing a crude screening run with AutoDock.

None of this is a guarantee that virtual docking on exascale machines is going to launch a golden age of drugs. It’s possible that researchers will discover that there are just a handful of small molecule compounds that actually exhibit both disease efficacy and are non-toxic. But Smith believes this approach is full of promise. “This is the way to design drugs since this mirrors the way nature works,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This