When Time Is of the Egress: Optimizing Your Transfers

By Andrew Kaczorek and Dan Harris

July 31, 2012

Traditionally running scientific workloads in AWS provides a diverse toolkit that allows researchers to easily sling data around different time zones, regions, or even globally once the data is inside of the infrastructure sandbox. However, getting data in and out of AWS has historically been more of a challenge. The available resources are still evolving and those pesky laws of physics tend to get in the way. Considering the rise of enterprises utilizing cloud for larger data and compute needs and the complexities that come with it, we thought it would be helpful to offer tips on optimizing ingress and egress transfers.

Within scientific computing there is a massive disconnect from theoretical conversations and the real world of data movement. We recently performed a data transfer to Amazon’s Elastic Compute Cloud using their Import/Export service. The service allows customers to mail in data on physical media which is then placed into a S3 bucket or EBS volume of their choice. As an experiment to compare this transfer to network-based transfer mechanisms like multi-stream upload to S3, we recorded all the time it took to prepare and ship the drive to Amazon.

There were several steps to transfer the 317 GBs of DNA sequence data into EC2:

  1. Installed AWS Import/Export command line tools.

  2. Created an Import job using AWS command line tools including a manifest and signature.

  3. Realized that the drive is an ext3 file system (and mounting ext3 on OS X is non-trivial).

  4. Created an Ubuntu virtual machine.

  5. Mounted the drive on the Ubuntu VM and wrote the signature file and manifest to the drive.

  6. Physically labeled the drive with a transfer ID that was provided by the registration process.

  7. Packaged and addressed the drive with a specific address that was to be used for the shipment.

  8. Headed to the local FedEx and shipped the drive overnight.

  9. Waited….

  10. Viewed completed transfer logs.

The next step had us moving the data from S3 to an EC2 instance to use it in a computation run. Direct to EBS snapshot is an option, but due to its higher costs as an image of the drive, the unknowns associated with the newness of the feature, and the constrains to the specific content of the file system, we decided against it.

Table of Shipping and Transport Times:

Prepare Drive

3 hr (concurrent with other project work)

Drive Shipped

4:12 PM EST (FedEx log)

Drive Arrives IAD

3:20 AM EST (FedEx log)

Drive Arrives at Amazon facility

9:45 AM EST (FedEx log)

Drive accepted by Amazon

1:13 PM EST (I/E toolkit log)

Data transfer begins

5:40 PM EST (I/E toolkit log)

Data transfer completes

9:17 PM EST (I/E toolkit log)

Here is a summary of the entire activity:

Total time to transfer 317GB

32 hours

Extrapolated total time to transfer 1TB

39.8 hours

Throughput of active AWS transfer

199 Mbps

Active AWS transfer of 317GB

3.6 hours

Extrapolated active AWS transfer of 1TB

11.4 hours

Overall throughput of 317GB transfer

22.5 Mbps

Extrapolated overall throughput of 1TB transfer

57.2 Mbps

This import job was compared to the results on some recent multi-stream upload tests performed with an envy-inducing 5 Mbps upload speed compared to 1 Mbps.

File Size

Transfer Time

Avg Speed

250 MB – one thread

413 seconds

.605 MB/sec (4.84 Mbit/sec)

250 MB – 30 threads

412 seconds

.606 MB/sec (4.84 Mbit/sec)

1 GB – one thread

1,695 seconds

.604 MB/Sec (4.83 Mbit/sec)

1 GB – 30 threads

1,693 seconds

.605 MB/sec (4.84 Mbit/sec)

We were able to saturate upload bandwidth and ingress at customer sites, which have much higher outbound data rates in the 50 Mbps range. Further, if there’s a bottleneck for delivering data over the wire it’s on the source end and not on the EC2 end of the line.

The results showed that 50 Mbps of upload speed could saturate a company’s network therefore throttling transfer at 70 percent total bandwidth for an outbound rate 35 Mbps. Interestingly, the transfer speed is faster than the Import/Export service. This shows that almost 500 GB could be moved in the same time it took to transfer by shipping the drive. This drive wasn’t filled to capacity and the theoretical Import/Export throughput would use a full drive by extrapolating the time to load 1TB. Loading that extra data would take about 8 more hours and increase the throughput of the Import/Export approach to 58 Mbps. The rate could also increase if the time it takes to prep the drive was reduced.

What we found from our experiment is that the nature of your workflow should be considered when deciding which transfer method to use. If producing a constant flow of data at a rate that matches the allotted upload bandwidth, streaming over the network is a better option. On the other hand, if there is a large, pre-existing data set and no time to wait for it to upload consider using Amazon’s Import/Export service.

Initiating a transfer entirely in software and having the data eventually make its way into the cloud without getting up from your desk is not always practical. For example, a 317 GB payload would take approximately 30 hours to transfer to AWS if using the Import/Export job approach and 30 days to import 1 Mbps uplink was saturated 24/7. Given a typical enterprise uplink of 50 Mbps, the tables would be turned. Let’s not forget non-technical factors involved in the use of the Import/Export approach such as the hassle handling USB drives, cardboard, packing tape, and cranky shipping depot employees.

Lastly, if the over-the-wire transfer is projected to take longer than a business week, use an AWS Import/Export job instead. AWS Import/Export is an extremely viable way of managing the ingress and egress of data until bandwidth becomes more ubiquitous and plentiful.

Editor’s Note: The original byline was incorrectly attributed to Cycle Computing CEO Jason Stowe.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This