When Time Is of the Egress: Optimizing Your Transfers

By Andrew Kaczorek and Dan Harris

July 31, 2012

Traditionally running scientific workloads in AWS provides a diverse toolkit that allows researchers to easily sling data around different time zones, regions, or even globally once the data is inside of the infrastructure sandbox. However, getting data in and out of AWS has historically been more of a challenge. The available resources are still evolving and those pesky laws of physics tend to get in the way. Considering the rise of enterprises utilizing cloud for larger data and compute needs and the complexities that come with it, we thought it would be helpful to offer tips on optimizing ingress and egress transfers.

Within scientific computing there is a massive disconnect from theoretical conversations and the real world of data movement. We recently performed a data transfer to Amazon’s Elastic Compute Cloud using their Import/Export service. The service allows customers to mail in data on physical media which is then placed into a S3 bucket or EBS volume of their choice. As an experiment to compare this transfer to network-based transfer mechanisms like multi-stream upload to S3, we recorded all the time it took to prepare and ship the drive to Amazon.

There were several steps to transfer the 317 GBs of DNA sequence data into EC2:

  1. Installed AWS Import/Export command line tools.

  2. Created an Import job using AWS command line tools including a manifest and signature.

  3. Realized that the drive is an ext3 file system (and mounting ext3 on OS X is non-trivial).

  4. Created an Ubuntu virtual machine.

  5. Mounted the drive on the Ubuntu VM and wrote the signature file and manifest to the drive.

  6. Physically labeled the drive with a transfer ID that was provided by the registration process.

  7. Packaged and addressed the drive with a specific address that was to be used for the shipment.

  8. Headed to the local FedEx and shipped the drive overnight.

  9. Waited….

  10. Viewed completed transfer logs.

The next step had us moving the data from S3 to an EC2 instance to use it in a computation run. Direct to EBS snapshot is an option, but due to its higher costs as an image of the drive, the unknowns associated with the newness of the feature, and the constrains to the specific content of the file system, we decided against it.

Table of Shipping and Transport Times:

Prepare Drive

3 hr (concurrent with other project work)

Drive Shipped

4:12 PM EST (FedEx log)

Drive Arrives IAD

3:20 AM EST (FedEx log)

Drive Arrives at Amazon facility

9:45 AM EST (FedEx log)

Drive accepted by Amazon

1:13 PM EST (I/E toolkit log)

Data transfer begins

5:40 PM EST (I/E toolkit log)

Data transfer completes

9:17 PM EST (I/E toolkit log)

Here is a summary of the entire activity:

Total time to transfer 317GB

32 hours

Extrapolated total time to transfer 1TB

39.8 hours

Throughput of active AWS transfer

199 Mbps

Active AWS transfer of 317GB

3.6 hours

Extrapolated active AWS transfer of 1TB

11.4 hours

Overall throughput of 317GB transfer

22.5 Mbps

Extrapolated overall throughput of 1TB transfer

57.2 Mbps

This import job was compared to the results on some recent multi-stream upload tests performed with an envy-inducing 5 Mbps upload speed compared to 1 Mbps.

File Size

Transfer Time

Avg Speed

250 MB – one thread

413 seconds

.605 MB/sec (4.84 Mbit/sec)

250 MB – 30 threads

412 seconds

.606 MB/sec (4.84 Mbit/sec)

1 GB – one thread

1,695 seconds

.604 MB/Sec (4.83 Mbit/sec)

1 GB – 30 threads

1,693 seconds

.605 MB/sec (4.84 Mbit/sec)

We were able to saturate upload bandwidth and ingress at customer sites, which have much higher outbound data rates in the 50 Mbps range. Further, if there’s a bottleneck for delivering data over the wire it’s on the source end and not on the EC2 end of the line.

The results showed that 50 Mbps of upload speed could saturate a company’s network therefore throttling transfer at 70 percent total bandwidth for an outbound rate 35 Mbps. Interestingly, the transfer speed is faster than the Import/Export service. This shows that almost 500 GB could be moved in the same time it took to transfer by shipping the drive. This drive wasn’t filled to capacity and the theoretical Import/Export throughput would use a full drive by extrapolating the time to load 1TB. Loading that extra data would take about 8 more hours and increase the throughput of the Import/Export approach to 58 Mbps. The rate could also increase if the time it takes to prep the drive was reduced.

What we found from our experiment is that the nature of your workflow should be considered when deciding which transfer method to use. If producing a constant flow of data at a rate that matches the allotted upload bandwidth, streaming over the network is a better option. On the other hand, if there is a large, pre-existing data set and no time to wait for it to upload consider using Amazon’s Import/Export service.

Initiating a transfer entirely in software and having the data eventually make its way into the cloud without getting up from your desk is not always practical. For example, a 317 GB payload would take approximately 30 hours to transfer to AWS if using the Import/Export job approach and 30 days to import 1 Mbps uplink was saturated 24/7. Given a typical enterprise uplink of 50 Mbps, the tables would be turned. Let’s not forget non-technical factors involved in the use of the Import/Export approach such as the hassle handling USB drives, cardboard, packing tape, and cranky shipping depot employees.

Lastly, if the over-the-wire transfer is projected to take longer than a business week, use an AWS Import/Export job instead. AWS Import/Export is an extremely viable way of managing the ingress and egress of data until bandwidth becomes more ubiquitous and plentiful.

Editor’s Note: The original byline was incorrectly attributed to Cycle Computing CEO Jason Stowe.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This