When Time Is of the Egress: Optimizing Your Transfers

By Andrew Kaczorek and Dan Harris

July 31, 2012

Traditionally running scientific workloads in AWS provides a diverse toolkit that allows researchers to easily sling data around different time zones, regions, or even globally once the data is inside of the infrastructure sandbox. However, getting data in and out of AWS has historically been more of a challenge. The available resources are still evolving and those pesky laws of physics tend to get in the way. Considering the rise of enterprises utilizing cloud for larger data and compute needs and the complexities that come with it, we thought it would be helpful to offer tips on optimizing ingress and egress transfers.

Within scientific computing there is a massive disconnect from theoretical conversations and the real world of data movement. We recently performed a data transfer to Amazon’s Elastic Compute Cloud using their Import/Export service. The service allows customers to mail in data on physical media which is then placed into a S3 bucket or EBS volume of their choice. As an experiment to compare this transfer to network-based transfer mechanisms like multi-stream upload to S3, we recorded all the time it took to prepare and ship the drive to Amazon.

There were several steps to transfer the 317 GBs of DNA sequence data into EC2:

  1. Installed AWS Import/Export command line tools.

  2. Created an Import job using AWS command line tools including a manifest and signature.

  3. Realized that the drive is an ext3 file system (and mounting ext3 on OS X is non-trivial).

  4. Created an Ubuntu virtual machine.

  5. Mounted the drive on the Ubuntu VM and wrote the signature file and manifest to the drive.

  6. Physically labeled the drive with a transfer ID that was provided by the registration process.

  7. Packaged and addressed the drive with a specific address that was to be used for the shipment.

  8. Headed to the local FedEx and shipped the drive overnight.

  9. Waited….

  10. Viewed completed transfer logs.

The next step had us moving the data from S3 to an EC2 instance to use it in a computation run. Direct to EBS snapshot is an option, but due to its higher costs as an image of the drive, the unknowns associated with the newness of the feature, and the constrains to the specific content of the file system, we decided against it.

Table of Shipping and Transport Times:

Prepare Drive

3 hr (concurrent with other project work)

Drive Shipped

4:12 PM EST (FedEx log)

Drive Arrives IAD

3:20 AM EST (FedEx log)

Drive Arrives at Amazon facility

9:45 AM EST (FedEx log)

Drive accepted by Amazon

1:13 PM EST (I/E toolkit log)

Data transfer begins

5:40 PM EST (I/E toolkit log)

Data transfer completes

9:17 PM EST (I/E toolkit log)

Here is a summary of the entire activity:

Total time to transfer 317GB

32 hours

Extrapolated total time to transfer 1TB

39.8 hours

Throughput of active AWS transfer

199 Mbps

Active AWS transfer of 317GB

3.6 hours

Extrapolated active AWS transfer of 1TB

11.4 hours

Overall throughput of 317GB transfer

22.5 Mbps

Extrapolated overall throughput of 1TB transfer

57.2 Mbps

This import job was compared to the results on some recent multi-stream upload tests performed with an envy-inducing 5 Mbps upload speed compared to 1 Mbps.

File Size

Transfer Time

Avg Speed

250 MB – one thread

413 seconds

.605 MB/sec (4.84 Mbit/sec)

250 MB – 30 threads

412 seconds

.606 MB/sec (4.84 Mbit/sec)

1 GB – one thread

1,695 seconds

.604 MB/Sec (4.83 Mbit/sec)

1 GB – 30 threads

1,693 seconds

.605 MB/sec (4.84 Mbit/sec)

We were able to saturate upload bandwidth and ingress at customer sites, which have much higher outbound data rates in the 50 Mbps range. Further, if there’s a bottleneck for delivering data over the wire it’s on the source end and not on the EC2 end of the line.

The results showed that 50 Mbps of upload speed could saturate a company’s network therefore throttling transfer at 70 percent total bandwidth for an outbound rate 35 Mbps. Interestingly, the transfer speed is faster than the Import/Export service. This shows that almost 500 GB could be moved in the same time it took to transfer by shipping the drive. This drive wasn’t filled to capacity and the theoretical Import/Export throughput would use a full drive by extrapolating the time to load 1TB. Loading that extra data would take about 8 more hours and increase the throughput of the Import/Export approach to 58 Mbps. The rate could also increase if the time it takes to prep the drive was reduced.

What we found from our experiment is that the nature of your workflow should be considered when deciding which transfer method to use. If producing a constant flow of data at a rate that matches the allotted upload bandwidth, streaming over the network is a better option. On the other hand, if there is a large, pre-existing data set and no time to wait for it to upload consider using Amazon’s Import/Export service.

Initiating a transfer entirely in software and having the data eventually make its way into the cloud without getting up from your desk is not always practical. For example, a 317 GB payload would take approximately 30 hours to transfer to AWS if using the Import/Export job approach and 30 days to import 1 Mbps uplink was saturated 24/7. Given a typical enterprise uplink of 50 Mbps, the tables would be turned. Let’s not forget non-technical factors involved in the use of the Import/Export approach such as the hassle handling USB drives, cardboard, packing tape, and cranky shipping depot employees.

Lastly, if the over-the-wire transfer is projected to take longer than a business week, use an AWS Import/Export job instead. AWS Import/Export is an extremely viable way of managing the ingress and egress of data until bandwidth becomes more ubiquitous and plentiful.

Editor’s Note: The original byline was incorrectly attributed to Cycle Computing CEO Jason Stowe.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This