When Time Is of the Egress: Optimizing Your Transfers

By Andrew Kaczorek and Dan Harris

July 31, 2012

Traditionally running scientific workloads in AWS provides a diverse toolkit that allows researchers to easily sling data around different time zones, regions, or even globally once the data is inside of the infrastructure sandbox. However, getting data in and out of AWS has historically been more of a challenge. The available resources are still evolving and those pesky laws of physics tend to get in the way. Considering the rise of enterprises utilizing cloud for larger data and compute needs and the complexities that come with it, we thought it would be helpful to offer tips on optimizing ingress and egress transfers.

Within scientific computing there is a massive disconnect from theoretical conversations and the real world of data movement. We recently performed a data transfer to Amazon’s Elastic Compute Cloud using their Import/Export service. The service allows customers to mail in data on physical media which is then placed into a S3 bucket or EBS volume of their choice. As an experiment to compare this transfer to network-based transfer mechanisms like multi-stream upload to S3, we recorded all the time it took to prepare and ship the drive to Amazon.

There were several steps to transfer the 317 GBs of DNA sequence data into EC2:

  1. Installed AWS Import/Export command line tools.

  2. Created an Import job using AWS command line tools including a manifest and signature.

  3. Realized that the drive is an ext3 file system (and mounting ext3 on OS X is non-trivial).

  4. Created an Ubuntu virtual machine.

  5. Mounted the drive on the Ubuntu VM and wrote the signature file and manifest to the drive.

  6. Physically labeled the drive with a transfer ID that was provided by the registration process.

  7. Packaged and addressed the drive with a specific address that was to be used for the shipment.

  8. Headed to the local FedEx and shipped the drive overnight.

  9. Waited….

  10. Viewed completed transfer logs.

The next step had us moving the data from S3 to an EC2 instance to use it in a computation run. Direct to EBS snapshot is an option, but due to its higher costs as an image of the drive, the unknowns associated with the newness of the feature, and the constrains to the specific content of the file system, we decided against it.

Table of Shipping and Transport Times:

Prepare Drive

3 hr (concurrent with other project work)

Drive Shipped

4:12 PM EST (FedEx log)

Drive Arrives IAD

3:20 AM EST (FedEx log)

Drive Arrives at Amazon facility

9:45 AM EST (FedEx log)

Drive accepted by Amazon

1:13 PM EST (I/E toolkit log)

Data transfer begins

5:40 PM EST (I/E toolkit log)

Data transfer completes

9:17 PM EST (I/E toolkit log)

Here is a summary of the entire activity:

Total time to transfer 317GB

32 hours

Extrapolated total time to transfer 1TB

39.8 hours

Throughput of active AWS transfer

199 Mbps

Active AWS transfer of 317GB

3.6 hours

Extrapolated active AWS transfer of 1TB

11.4 hours

Overall throughput of 317GB transfer

22.5 Mbps

Extrapolated overall throughput of 1TB transfer

57.2 Mbps

This import job was compared to the results on some recent multi-stream upload tests performed with an envy-inducing 5 Mbps upload speed compared to 1 Mbps.

File Size

Transfer Time

Avg Speed

250 MB – one thread

413 seconds

.605 MB/sec (4.84 Mbit/sec)

250 MB – 30 threads

412 seconds

.606 MB/sec (4.84 Mbit/sec)

1 GB – one thread

1,695 seconds

.604 MB/Sec (4.83 Mbit/sec)

1 GB – 30 threads

1,693 seconds

.605 MB/sec (4.84 Mbit/sec)

We were able to saturate upload bandwidth and ingress at customer sites, which have much higher outbound data rates in the 50 Mbps range. Further, if there’s a bottleneck for delivering data over the wire it’s on the source end and not on the EC2 end of the line.

The results showed that 50 Mbps of upload speed could saturate a company’s network therefore throttling transfer at 70 percent total bandwidth for an outbound rate 35 Mbps. Interestingly, the transfer speed is faster than the Import/Export service. This shows that almost 500 GB could be moved in the same time it took to transfer by shipping the drive. This drive wasn’t filled to capacity and the theoretical Import/Export throughput would use a full drive by extrapolating the time to load 1TB. Loading that extra data would take about 8 more hours and increase the throughput of the Import/Export approach to 58 Mbps. The rate could also increase if the time it takes to prep the drive was reduced.

What we found from our experiment is that the nature of your workflow should be considered when deciding which transfer method to use. If producing a constant flow of data at a rate that matches the allotted upload bandwidth, streaming over the network is a better option. On the other hand, if there is a large, pre-existing data set and no time to wait for it to upload consider using Amazon’s Import/Export service.

Initiating a transfer entirely in software and having the data eventually make its way into the cloud without getting up from your desk is not always practical. For example, a 317 GB payload would take approximately 30 hours to transfer to AWS if using the Import/Export job approach and 30 days to import 1 Mbps uplink was saturated 24/7. Given a typical enterprise uplink of 50 Mbps, the tables would be turned. Let’s not forget non-technical factors involved in the use of the Import/Export approach such as the hassle handling USB drives, cardboard, packing tape, and cranky shipping depot employees.

Lastly, if the over-the-wire transfer is projected to take longer than a business week, use an AWS Import/Export job instead. AWS Import/Export is an extremely viable way of managing the ingress and egress of data until bandwidth becomes more ubiquitous and plentiful.

Editor’s Note: The original byline was incorrectly attributed to Cycle Computing CEO Jason Stowe.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This