Proving the Case for Climate Change with Hi-Res Models

By Aaron Dubrow

August 2, 2012

Numerical weather prediction was one of the original computing problems. When the ENIAC, the first electronic general-purpose computer, came online in 1947, simulations of the atmosphere (along with missile trajectories) was one of the first problems scientists ran on the system.

James Kinter, director of the Center for Ocean-Land-Atmosphere Studies at the Institute of Global Environment and Society, presented this historical tidbit on the second morning of the recent XSEDE12 conference in Chicago. He then showcased the latest advances in climate and weather modeling enabled by the Extreme Science and Engineering Discovery Environment (XSEDE), the National Science Foundation (NSF)-supported cyberinfrastructure for open science.

His talk, “Benefits and Challenges of High Spatial Resolution Climate Models,” included the results of simulations of climate runs between 2008 and 2011 on TeraGrid and XSEDE systems (TeraGrid was the predecessor to XSEDE).

The presentation covered three major research projects funded by the NSF: (1) Project Athena – Resolving Mesoscales in the Atmosphere; (2) PetaApps Team – Resolving Ocean Eddies; and (3) CMMAP – Super-Parameterization and Resolving Clouds, a project led by David Randall at Colorado State University. Cumulatively, these projects, each of which involves dozens of researchers internationally, show the ability of simulations and scientific visualization to depict our warming Earth on a regional scale with uncanny accuracy.

“You might think there’s a debate about climate change,” Kinter said. “But in my community, we’ve gotten past the point of it being a debate. However, our climate models are not perfect.” Climate change deniers leap on these imperfections to challenge whether we can trust the models. “To answer this question, we have to prove the case,” he said.

In the last 50 years, the field of climate and weather modeling has taken advantage of the million-fold increase in computing power to make three improvements to the codes that mimic the atmosphere.

According to Kinter, scientists have improved our understanding of the physical processes involved in atmospheric modeling and incorporated these insights into the evolving codes. They have developed better data assimilation methods to incorporate information from satellites, Doppler radar and ocean monitoring sensors into their models. And they have increased spatial resolution, or the amount of fine-grained detail, that can be included in the simulations.

There is evidence that this last step — enhanced spatial resolution — can not only improve climate model fidelity, but also change our understanding of climate dynamics both qualitatively and quantitatively.

The big question, though, is: “What’s the bang for the buck when you start looking at high resolution?” To test this, Kinter and his colleagues simulated a variety of climate scenarios at resolutions ranging from 7 kilometers (the most fine-grained) to 125 kilometers (the most coarse-grained).

To accomplish this massive computing feat, Kinter’s team was granted a special allocation of computing time on the Athena supercomputer at the National Institute for Computational Sciences (NICS) in 2009 and 2010. For six months, the entire 18,048-core system was at the disposal of the team. Based on those runs and follow-ups on other high performance computing systems, his group has published more than a half dozen publications that run the gamut from the dynamics of tropical storm and cyclone formation to global and regional rainfall forecasts.

Among the results he presented at the conference were simulations that represented boreal summer climatology at 7-kilometer resolution over the course of eight summers. Previously researchers had only been able to simulate a single week or month at this level of detail.

Animation of boreal summer 2009 simulation at 7 km resolution using the NICAM model from JAMSTEC and University of Tokyo.

Earlier simulations produced by many groups around the world showed trends of modeled surface temperature change over the last century that have a statistically significant separation at the global and large continental scale between simulations that include the human influence on climate (increasing greenhouse gases and aerosols) and those that don’t. This was “the smoking gun of whether humans are responsible for the rise in temperature,” Kinter said.

However, the trends at regional scale are not as discernible. Is that because the trends are not there or because the models lack the acuity to see them? Kinter and his colleagues’ investigations of high spatial resolution shed light on this question.

Other simulations explored the probability of extreme drought in the Midwest, Europe and elsewhere in the future. By his estimates, the Midwest will experience the levels of extreme drought it is currently experiencing in 20 years out of every 50 — a four-fold increase. “This drought will be the norm at the end of the 21st century,” Kinter said, “according to these simulations.”

He also presented a number of key examples where increases in model resolution impacted the clarity and content of results. For instance, he cited research by collaborators that showed how low-resolution models of the East Coast Gulf Stream put rain associated with the weather pattern in the wrong place, whereas high-resolution models delineate the bands of rain off the East Coast with accuracy.

After outlining the advantages of higher-resolution models, Kinter elaborated on the challenges that such a change generates. Biases in the models, the parameterization of small time and spatial scale effects (like clouds), and the coupling of global climate models with cloud resolving models, are all difficult, but not impossible, to overcome. However, the primary challenge that Kinter’s group and the community are dealing with is the “exaflood of data” produced by high-resolution and highly complex coupled models.

For Project Athena, the total data volume generated and now resident at NICS is 1.2 petabytes. However, the total data volume on spinning disk at the Center for Ocean-Land-Atmosphere Studies for Project Athena is capped at 50 terabytes. This creates difficulties.

Running on TeraGrid systems at large-scale for the first time with so much data, “everything broke,” Kinter said. He and his colleagues had to find ad hoc solutions to complete the simulations. The next step, he said, is to take those ad hoc solutions and use them to develop systematic, repeatable solutions.

Put another way: to deal with the exaflood, the community needs to progress from Noah’s Ark to a professional shipping industry. “We need exaflood insurance,” Kinter concluded. “That’s what we’re calling on the XSEDE team to help us with.”


The following contributed to the work described in this article: Deepthi Achutavarier, Jennifer Adams, Eric Altshuler, Troy Baer, Cecilia Bitz, Frank Bryan, Ben Cash, William Collins, John Dennis, Paul Dirmeyer, Matt Ezell, Christian Halloy, Mats Hamrud, Nathan Hearn, Bohua Huang, Emilia Jin, Dwayne John, Pete Johnsen, Thomas Jung, Ben Kirtman, Chihiro Kodama, Richard Loft, Bruce Loftis, Julia Manganello, Larry Marx, Martin Miller, Per Nyberg, Tim Palmer, David Randall and the CMMAP Team, Clem Rousset, Masaki Satoh, Ben Shaw, Leo Siqueira, Cristiana Stan, Robert Tomas, Hirofumi Tomita, Peter Towers and Mariana Vertenstein, Tom Wakefield, Nils Wedi, Kwai Wong, and Yohei Yamada.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings (John Wiley & Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This