Proving the Case for Climate Change with Hi-Res Models

By Aaron Dubrow

August 2, 2012

Numerical weather prediction was one of the original computing problems. When the ENIAC, the first electronic general-purpose computer, came online in 1947, simulations of the atmosphere (along with missile trajectories) was one of the first problems scientists ran on the system.

James Kinter, director of the Center for Ocean-Land-Atmosphere Studies at the Institute of Global Environment and Society, presented this historical tidbit on the second morning of the recent XSEDE12 conference in Chicago. He then showcased the latest advances in climate and weather modeling enabled by the Extreme Science and Engineering Discovery Environment (XSEDE), the National Science Foundation (NSF)-supported cyberinfrastructure for open science.

His talk, “Benefits and Challenges of High Spatial Resolution Climate Models,” included the results of simulations of climate runs between 2008 and 2011 on TeraGrid and XSEDE systems (TeraGrid was the predecessor to XSEDE).

The presentation covered three major research projects funded by the NSF: (1) Project Athena – Resolving Mesoscales in the Atmosphere; (2) PetaApps Team – Resolving Ocean Eddies; and (3) CMMAP – Super-Parameterization and Resolving Clouds, a project led by David Randall at Colorado State University. Cumulatively, these projects, each of which involves dozens of researchers internationally, show the ability of simulations and scientific visualization to depict our warming Earth on a regional scale with uncanny accuracy.

“You might think there’s a debate about climate change,” Kinter said. “But in my community, we’ve gotten past the point of it being a debate. However, our climate models are not perfect.” Climate change deniers leap on these imperfections to challenge whether we can trust the models. “To answer this question, we have to prove the case,” he said.

In the last 50 years, the field of climate and weather modeling has taken advantage of the million-fold increase in computing power to make three improvements to the codes that mimic the atmosphere.

According to Kinter, scientists have improved our understanding of the physical processes involved in atmospheric modeling and incorporated these insights into the evolving codes. They have developed better data assimilation methods to incorporate information from satellites, Doppler radar and ocean monitoring sensors into their models. And they have increased spatial resolution, or the amount of fine-grained detail, that can be included in the simulations.

There is evidence that this last step — enhanced spatial resolution — can not only improve climate model fidelity, but also change our understanding of climate dynamics both qualitatively and quantitatively.

The big question, though, is: “What’s the bang for the buck when you start looking at high resolution?” To test this, Kinter and his colleagues simulated a variety of climate scenarios at resolutions ranging from 7 kilometers (the most fine-grained) to 125 kilometers (the most coarse-grained).

To accomplish this massive computing feat, Kinter’s team was granted a special allocation of computing time on the Athena supercomputer at the National Institute for Computational Sciences (NICS) in 2009 and 2010. For six months, the entire 18,048-core system was at the disposal of the team. Based on those runs and follow-ups on other high performance computing systems, his group has published more than a half dozen publications that run the gamut from the dynamics of tropical storm and cyclone formation to global and regional rainfall forecasts.

Among the results he presented at the conference were simulations that represented boreal summer climatology at 7-kilometer resolution over the course of eight summers. Previously researchers had only been able to simulate a single week or month at this level of detail.

Animation of boreal summer 2009 simulation at 7 km resolution using the NICAM model from JAMSTEC and University of Tokyo.

Earlier simulations produced by many groups around the world showed trends of modeled surface temperature change over the last century that have a statistically significant separation at the global and large continental scale between simulations that include the human influence on climate (increasing greenhouse gases and aerosols) and those that don’t. This was “the smoking gun of whether humans are responsible for the rise in temperature,” Kinter said.

However, the trends at regional scale are not as discernible. Is that because the trends are not there or because the models lack the acuity to see them? Kinter and his colleagues’ investigations of high spatial resolution shed light on this question.

Other simulations explored the probability of extreme drought in the Midwest, Europe and elsewhere in the future. By his estimates, the Midwest will experience the levels of extreme drought it is currently experiencing in 20 years out of every 50 — a four-fold increase. “This drought will be the norm at the end of the 21st century,” Kinter said, “according to these simulations.”

He also presented a number of key examples where increases in model resolution impacted the clarity and content of results. For instance, he cited research by collaborators that showed how low-resolution models of the East Coast Gulf Stream put rain associated with the weather pattern in the wrong place, whereas high-resolution models delineate the bands of rain off the East Coast with accuracy.

After outlining the advantages of higher-resolution models, Kinter elaborated on the challenges that such a change generates. Biases in the models, the parameterization of small time and spatial scale effects (like clouds), and the coupling of global climate models with cloud resolving models, are all difficult, but not impossible, to overcome. However, the primary challenge that Kinter’s group and the community are dealing with is the “exaflood of data” produced by high-resolution and highly complex coupled models.

For Project Athena, the total data volume generated and now resident at NICS is 1.2 petabytes. However, the total data volume on spinning disk at the Center for Ocean-Land-Atmosphere Studies for Project Athena is capped at 50 terabytes. This creates difficulties.

Running on TeraGrid systems at large-scale for the first time with so much data, “everything broke,” Kinter said. He and his colleagues had to find ad hoc solutions to complete the simulations. The next step, he said, is to take those ad hoc solutions and use them to develop systematic, repeatable solutions.

Put another way: to deal with the exaflood, the community needs to progress from Noah’s Ark to a professional shipping industry. “We need exaflood insurance,” Kinter concluded. “That’s what we’re calling on the XSEDE team to help us with.”


The following contributed to the work described in this article: Deepthi Achutavarier, Jennifer Adams, Eric Altshuler, Troy Baer, Cecilia Bitz, Frank Bryan, Ben Cash, William Collins, John Dennis, Paul Dirmeyer, Matt Ezell, Christian Halloy, Mats Hamrud, Nathan Hearn, Bohua Huang, Emilia Jin, Dwayne John, Pete Johnsen, Thomas Jung, Ben Kirtman, Chihiro Kodama, Richard Loft, Bruce Loftis, Julia Manganello, Larry Marx, Martin Miller, Per Nyberg, Tim Palmer, David Randall and the CMMAP Team, Clem Rousset, Masaki Satoh, Ben Shaw, Leo Siqueira, Cristiana Stan, Robert Tomas, Hirofumi Tomita, Peter Towers and Mariana Vertenstein, Tom Wakefield, Nils Wedi, Kwai Wong, and Yohei Yamada.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This