Proving the Case for Climate Change with Hi-Res Models

By Aaron Dubrow

August 2, 2012

Numerical weather prediction was one of the original computing problems. When the ENIAC, the first electronic general-purpose computer, came online in 1947, simulations of the atmosphere (along with missile trajectories) was one of the first problems scientists ran on the system.

James Kinter, director of the Center for Ocean-Land-Atmosphere Studies at the Institute of Global Environment and Society, presented this historical tidbit on the second morning of the recent XSEDE12 conference in Chicago. He then showcased the latest advances in climate and weather modeling enabled by the Extreme Science and Engineering Discovery Environment (XSEDE), the National Science Foundation (NSF)-supported cyberinfrastructure for open science.

His talk, “Benefits and Challenges of High Spatial Resolution Climate Models,” included the results of simulations of climate runs between 2008 and 2011 on TeraGrid and XSEDE systems (TeraGrid was the predecessor to XSEDE).

The presentation covered three major research projects funded by the NSF: (1) Project Athena – Resolving Mesoscales in the Atmosphere; (2) PetaApps Team – Resolving Ocean Eddies; and (3) CMMAP – Super-Parameterization and Resolving Clouds, a project led by David Randall at Colorado State University. Cumulatively, these projects, each of which involves dozens of researchers internationally, show the ability of simulations and scientific visualization to depict our warming Earth on a regional scale with uncanny accuracy.

“You might think there’s a debate about climate change,” Kinter said. “But in my community, we’ve gotten past the point of it being a debate. However, our climate models are not perfect.” Climate change deniers leap on these imperfections to challenge whether we can trust the models. “To answer this question, we have to prove the case,” he said.

In the last 50 years, the field of climate and weather modeling has taken advantage of the million-fold increase in computing power to make three improvements to the codes that mimic the atmosphere.

According to Kinter, scientists have improved our understanding of the physical processes involved in atmospheric modeling and incorporated these insights into the evolving codes. They have developed better data assimilation methods to incorporate information from satellites, Doppler radar and ocean monitoring sensors into their models. And they have increased spatial resolution, or the amount of fine-grained detail, that can be included in the simulations.

There is evidence that this last step — enhanced spatial resolution — can not only improve climate model fidelity, but also change our understanding of climate dynamics both qualitatively and quantitatively.

The big question, though, is: “What’s the bang for the buck when you start looking at high resolution?” To test this, Kinter and his colleagues simulated a variety of climate scenarios at resolutions ranging from 7 kilometers (the most fine-grained) to 125 kilometers (the most coarse-grained).

To accomplish this massive computing feat, Kinter’s team was granted a special allocation of computing time on the Athena supercomputer at the National Institute for Computational Sciences (NICS) in 2009 and 2010. For six months, the entire 18,048-core system was at the disposal of the team. Based on those runs and follow-ups on other high performance computing systems, his group has published more than a half dozen publications that run the gamut from the dynamics of tropical storm and cyclone formation to global and regional rainfall forecasts.

Among the results he presented at the conference were simulations that represented boreal summer climatology at 7-kilometer resolution over the course of eight summers. Previously researchers had only been able to simulate a single week or month at this level of detail.

Animation of boreal summer 2009 simulation at 7 km resolution using the NICAM model from JAMSTEC and University of Tokyo.

Earlier simulations produced by many groups around the world showed trends of modeled surface temperature change over the last century that have a statistically significant separation at the global and large continental scale between simulations that include the human influence on climate (increasing greenhouse gases and aerosols) and those that don’t. This was “the smoking gun of whether humans are responsible for the rise in temperature,” Kinter said.

However, the trends at regional scale are not as discernible. Is that because the trends are not there or because the models lack the acuity to see them? Kinter and his colleagues’ investigations of high spatial resolution shed light on this question.

Other simulations explored the probability of extreme drought in the Midwest, Europe and elsewhere in the future. By his estimates, the Midwest will experience the levels of extreme drought it is currently experiencing in 20 years out of every 50 — a four-fold increase. “This drought will be the norm at the end of the 21st century,” Kinter said, “according to these simulations.”

He also presented a number of key examples where increases in model resolution impacted the clarity and content of results. For instance, he cited research by collaborators that showed how low-resolution models of the East Coast Gulf Stream put rain associated with the weather pattern in the wrong place, whereas high-resolution models delineate the bands of rain off the East Coast with accuracy.

After outlining the advantages of higher-resolution models, Kinter elaborated on the challenges that such a change generates. Biases in the models, the parameterization of small time and spatial scale effects (like clouds), and the coupling of global climate models with cloud resolving models, are all difficult, but not impossible, to overcome. However, the primary challenge that Kinter’s group and the community are dealing with is the “exaflood of data” produced by high-resolution and highly complex coupled models.

For Project Athena, the total data volume generated and now resident at NICS is 1.2 petabytes. However, the total data volume on spinning disk at the Center for Ocean-Land-Atmosphere Studies for Project Athena is capped at 50 terabytes. This creates difficulties.

Running on TeraGrid systems at large-scale for the first time with so much data, “everything broke,” Kinter said. He and his colleagues had to find ad hoc solutions to complete the simulations. The next step, he said, is to take those ad hoc solutions and use them to develop systematic, repeatable solutions.

Put another way: to deal with the exaflood, the community needs to progress from Noah’s Ark to a professional shipping industry. “We need exaflood insurance,” Kinter concluded. “That’s what we’re calling on the XSEDE team to help us with.”


The following contributed to the work described in this article: Deepthi Achutavarier, Jennifer Adams, Eric Altshuler, Troy Baer, Cecilia Bitz, Frank Bryan, Ben Cash, William Collins, John Dennis, Paul Dirmeyer, Matt Ezell, Christian Halloy, Mats Hamrud, Nathan Hearn, Bohua Huang, Emilia Jin, Dwayne John, Pete Johnsen, Thomas Jung, Ben Kirtman, Chihiro Kodama, Richard Loft, Bruce Loftis, Julia Manganello, Larry Marx, Martin Miller, Per Nyberg, Tim Palmer, David Randall and the CMMAP Team, Clem Rousset, Masaki Satoh, Ben Shaw, Leo Siqueira, Cristiana Stan, Robert Tomas, Hirofumi Tomita, Peter Towers and Mariana Vertenstein, Tom Wakefield, Nils Wedi, Kwai Wong, and Yohei Yamada.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This