Using an In-Memory Data Grid for Near Real-Time Data Analysis

By Nicole Hemsoth

August 6, 2012

by Dr. William Bain, ScaleOut Software, Inc.

Introduction

In today’s competitive world, businesses need to make fast decisions to respond to changing market conditions and to maintain a competitive edge. The explosion of data that must be analyzed to find trends or hidden insights intensifies this challenge. Both the private and public sectors are turning to parallel computing techniques, such as “map/reduce” to quickly sift through large data volumes.

In some cases, it is practical to analyze huge sets of historical, disk-based data over the course of minutes or hours using batch processing platforms such as Hadoop. For example, risk modeling to optimize the handling of insurance claims potentially needs to analyze billions of records and tens of terabytes of data. However, many applications need to continuously analyze relatively small but fast-changing data sets measured in the hundreds of gigabytes and reaching into terabytes.  Examples include clickstream data to optimize online promotions, stock trading data to implement trading strategies, machine log data to tune manufacturing processes, smart grid data, and many more.

Over the last several years, in-memory data grids (IMDGs) have proven their value in storing fast-changing application data and scaling application performance.  More recently, IMDGs have integrated map/reduce analytics into the grid to achieve powerful, easy-to-use analysis and enable near real-time decision making. For example, the following diagram illustrates an IMDG used to store and analyze incoming streams of market and news data to help generate alerts and strategies for optimizing financial operations. This article explains how using an IMDG with integrated map/reduce capabilities can simplify data analysis and provide important competitive advantages.

Real-Time Analytics Engine 

 

What is an In-Memory Data Grid?

By storing fast-changing data within a middleware software tier, IMDGs enable applications to seamlessly scale performance by adding servers that access and update a shared, memory-based data set.  To maximize scalability, IMDGs automatically load-balance data across servers on which the grid is hosted. They also redundantly store data on multiple servers to ensure high availability in case a server or network link fails. Additional capabilities, including eventing and distributed locking, make IMDGs a powerful data storage platform.

IMDGs typically integrate their data storage model with object-oriented programming languages, such as Java and C#. They store data as a collection of objects which are accessible either by specifying an identifying key or by querying object properties. The IMDG’s built-in parallel query mechanism can quickly scan a large data set for objects whose properties match a query specification. This provides an important tool for identifying data to be reviewed or analyzed. The following diagram illustrates the use of parallel query for selecting stock history data.

In Memory Data Grid 

Using an IMDG for Analytics

Without a doubt, the field of data analytics has gained a powerful new tool with the “map/reduce” analysis model, which has recently surged in popularity as open source solutions such as Hadoop have raised awareness. In fact, the roots of the map/reduce pattern date back to pioneering work in the 1980s which originally demonstrated the power of data-parallel computing.

Map/reduce implementations take many forms and are offered as components in several competing frameworks. Nearly all of these solutions are aimed at accelerating data analysis for disk-based data. With some data sets reaching petabytes in size, the benefits are often measured in reducing batch job processing times from hours to minutes for these “big data” analyses.

However, the overhead (and complexity) of disk-based map/reduce platforms is too high for applications which must quickly analyze fast-changing data sets measured in hundreds of gigabytes or terabytes. (Estimates by some analysts indicate that as much as sixty percent of data sets are smaller than ten terabytes.) In many situations, an answer in hours or minutes is not acceptable.  For example, an e-commerce Web site may need to monitor online shopping carts to see which products are selling. A financial services company might need to hone its equity trading strategy as it optimizes its response to fast-changing market conditions.

To address this challenge, leading-edge IMDGs have incorporated map/reduce analytics engines, transforming them from just scalable, memory-based data stores into parallel computing platforms for analyzing data and providing fast, near real-time results. IMDGs leverage the grid’s automatic load-balancing to minimize data motion and speed up analysis. Instead of migrating data into memory from disk, an IMDG analyzes data in place. Results also are stored and combined in memory, minimizing file I/O to calculate the final results. By eliminating these overheads, IMDGs dramatically reduce network usage and thereby shorten analysis time.

Moreover, by simplifying the programming model, IMDGs offer another advantage over popular, disk-based map/reduce platforms. Instead of requiring the application developer to create a key space for identifying objects to be analyzed, they make use of object-oriented query specifications to select objects.  Also, both the analysis (“map”) and merge (“reduce”) codes can be structured as straightforward, object-oriented methods written as if to be executed on a single workstation. These capabilities shorten design time and enable analysis applications to be quickly developed and revised.

The following diagram illustrates a map/reduce analysis of stock trading strategies across a set of stock histories held in the IMDG. A parallel query selects stocks for analysis, and the IMDG analyzes the stocks and merges the results using the supplied methods:

 Running Map/Reduce on an IMDG 

Running Map/Reduce on an IMDG

ScaleOut Grid Computing Edition (GCE) from ScaleOut Software is an example of an IMDG with an integrated data analytics engine. Using it as an example, the following steps demonstrate how an IMDG performs a map/reduce data analysis:

  • The data set to be analyzed in the IMDG originates from one of two sources. In many cases, especially those with tight latency requirements, the application continuously updates the grid as data flows through for processing. Alternatively, the application may stage the data set in the grid from persistent storage via a bulk loading operation. In either case, the IMDG holds the data, creates replicas for high availability, and load-balances it across servers to avoid hot spots.
  • ScaleOut GCE allows a query specification to be written either in Java using filter methods or in C# using the Microsoft language integrated query (LINQ) mechanism. This query specification selects the data to be analyzed, for example, ticker symbols, sales data, machine data, etc.
  • In ScaleOut GCE, the analysis and merge methods can be written either in Java or C#. Since GCE holds the objects to be analyzed or merged in memory, these methods are written without the need to use grid APIs. The analysis method specifies the analysis logic for a single data object selected by the query specification. For example, it might calculate stock trading profits for one company’s recent history of stock prices. The merge method combines the results of analyzing multiple objects and is repeatedly executed as necessary to merge all results. In the above example, it might calculate the average return for stock trades spanning many companies.
  • Using a special API in GCE called “invoke” and supplying the query specification and both the analysis and merge methods, the application starts a map/reduce computation called a “parallel method invocation” (PMI). GCE automatically performs the query, analysis, and merge steps in parallel across all grid servers using a multi-threaded computation engine and then returns the final, merged result back to the application. PMI operations can be performed repeatedly to provide a continuous stream of results. Because GCE avoids batch scheduling and keeps the overhead for starting and running the analysis low, it returns results with minimum latency for near real-time performance.

When using an IMDG, all computations are performed “in-place,” reducing data motion which is the enemy of high performance for map/reduce. Also, the IMDG leverages its features for maximizing scalability and high availability, such as partitioning, peer-to-peer architecture, and load-balancing. In addition, GCE implements special features for ensuring the high availability of map/reduce computations.

Lowering the Complexity Barrier

The map/reduce programming model has generated widespread interest in large part due to the popularity of the Hadoop open source software stack. However, Hadoop introduces a complex programming model and deployment architecture which must be thoroughly understood for Hadoop to be used effectively. For example, applications need to be written to fit Hadoop’s specific parallel execution model, incorporating several specialized elements such as record readers, mappers, combiners, and reducers. The number and interaction of these elements impact performance and require tuning. Beyond this, Hadoop’s execution environment, including the HDFS file system, job tracker (that is, the batch scheduler), and task trackers on each execution node must be deployed and managed. It may take a seasoned Java developer with knowledge of parallel programming weeks to become proficient with Hadoop. These complexities create a steep learning curve which impedes rapid adoption.

In contrast, the IMDG-based approach to map/reduce data analysis eliminates much of Hadoop’s complexity. Its object-oriented approach offers a simpler parallel execution model that reduces development time and eliminates the need for tuning. The user invests much less time in learning the model and focuses more on the analytical challenges of the business problem. Learning curves are flattened, and productivity is increased.

Delivering High Performance

To see the performance benefits of using an IMDG with integrated map/reduce, consider a real-world financial analysis application that  compares various stock trading strategies based on historical market data stored in the IMDG. This application makes use of the IMDG’s analytics engine to perform a map/reduce analysis across all grid servers and merge the results. Each stock history is stored as a separate object within the IMDG, and specific stock histories are selected for analysis using a parallel query. The analysis method evaluates a set of trading strategies across a single stock history, and the merge method combines the results across two stocks. The analytics engine repeatedly executes these methods to analyze all selected stocks and merge the results.

Performance measurements were made for this application using ScaleOut GCE’s IMDG to evaluate throughput scaling as the number of stock histories and grid servers was proportionally increased. As the graph below illustrates, the IMDG delivers linearly scalable throughput (shown as the red line in the graph). An alternative implementation of this application was measured using Hadoop’s map/reduce environment. Hadoop provided linear scaling with about 16X lower throughput (shown as the blue line in the graph) due to significant overhead introduced by file I/O and batch scheduling. By staging the stock history data in the IMDG instead of the Hadoop file system (HDFS), Hadoop’s throughput was increased by about 6X (shown as the green line), although it was still significantly below the IMDG’s throughput due to file I/O between the map and reduce phases.

 Throughput Comparison 

In Summary

With the ever increasing explosion in data for analysis and the need for fast insights on emerging trends, IMDGs offer a highly attractive platform for hosting map/reduce analysis. By simplifying the development model, IMDGs shorten the learning curve in developing analysis codes and eliminate the tuning steps required by more complex platforms. Because IMDGs run the analysis on data already staged in memory and load-balanced across grid servers, file I/O is eliminated and data motion is minimized. IMDGs also provide the infrastructure needed to automatically run analysis code on all grid servers in parallel and then combine the results with minimum latency. The net result is that by using an IMDG, application developers can easily analyze fast-changing, memory-based data and discover data patterns and trends that are vital to a company’s success.

 

Dr. William L. Bain is founder and CEO of ScaleOut Software, Inc. Bill has a Ph.D. in electrical engineering/parallel computing from Rice University, and he has worked at Bell Labs research, Intel, and Microsoft. Bill founded and ran three start-up companies prior to joining Microsoft. In the most recent company (Valence Research), he developed a distributed Web load-balancing software solution that was acquired by Microsoft and is now called Network Load Balanc­ing within the Windows Server operating system. Dr. Bain holds several patents in computer architecture and distributed computing. As a member of the Seattle-based Alliance of Angels, Dr. Bain is actively involved in entrepreneurship and the angel community.

www.scaleoutsoftware.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire