Using an In-Memory Data Grid for Near Real-Time Data Analysis

By Nicole Hemsoth

August 6, 2012

by Dr. William Bain, ScaleOut Software, Inc.


In today’s competitive world, businesses need to make fast decisions to respond to changing market conditions and to maintain a competitive edge. The explosion of data that must be analyzed to find trends or hidden insights intensifies this challenge. Both the private and public sectors are turning to parallel computing techniques, such as “map/reduce” to quickly sift through large data volumes.

In some cases, it is practical to analyze huge sets of historical, disk-based data over the course of minutes or hours using batch processing platforms such as Hadoop. For example, risk modeling to optimize the handling of insurance claims potentially needs to analyze billions of records and tens of terabytes of data. However, many applications need to continuously analyze relatively small but fast-changing data sets measured in the hundreds of gigabytes and reaching into terabytes.  Examples include clickstream data to optimize online promotions, stock trading data to implement trading strategies, machine log data to tune manufacturing processes, smart grid data, and many more.

Over the last several years, in-memory data grids (IMDGs) have proven their value in storing fast-changing application data and scaling application performance.  More recently, IMDGs have integrated map/reduce analytics into the grid to achieve powerful, easy-to-use analysis and enable near real-time decision making. For example, the following diagram illustrates an IMDG used to store and analyze incoming streams of market and news data to help generate alerts and strategies for optimizing financial operations. This article explains how using an IMDG with integrated map/reduce capabilities can simplify data analysis and provide important competitive advantages.

Real-Time Analytics Engine 


What is an In-Memory Data Grid?

By storing fast-changing data within a middleware software tier, IMDGs enable applications to seamlessly scale performance by adding servers that access and update a shared, memory-based data set.  To maximize scalability, IMDGs automatically load-balance data across servers on which the grid is hosted. They also redundantly store data on multiple servers to ensure high availability in case a server or network link fails. Additional capabilities, including eventing and distributed locking, make IMDGs a powerful data storage platform.

IMDGs typically integrate their data storage model with object-oriented programming languages, such as Java and C#. They store data as a collection of objects which are accessible either by specifying an identifying key or by querying object properties. The IMDG’s built-in parallel query mechanism can quickly scan a large data set for objects whose properties match a query specification. This provides an important tool for identifying data to be reviewed or analyzed. The following diagram illustrates the use of parallel query for selecting stock history data.

In Memory Data Grid 

Using an IMDG for Analytics

Without a doubt, the field of data analytics has gained a powerful new tool with the “map/reduce” analysis model, which has recently surged in popularity as open source solutions such as Hadoop have raised awareness. In fact, the roots of the map/reduce pattern date back to pioneering work in the 1980s which originally demonstrated the power of data-parallel computing.

Map/reduce implementations take many forms and are offered as components in several competing frameworks. Nearly all of these solutions are aimed at accelerating data analysis for disk-based data. With some data sets reaching petabytes in size, the benefits are often measured in reducing batch job processing times from hours to minutes for these “big data” analyses.

However, the overhead (and complexity) of disk-based map/reduce platforms is too high for applications which must quickly analyze fast-changing data sets measured in hundreds of gigabytes or terabytes. (Estimates by some analysts indicate that as much as sixty percent of data sets are smaller than ten terabytes.) In many situations, an answer in hours or minutes is not acceptable.  For example, an e-commerce Web site may need to monitor online shopping carts to see which products are selling. A financial services company might need to hone its equity trading strategy as it optimizes its response to fast-changing market conditions.

To address this challenge, leading-edge IMDGs have incorporated map/reduce analytics engines, transforming them from just scalable, memory-based data stores into parallel computing platforms for analyzing data and providing fast, near real-time results. IMDGs leverage the grid’s automatic load-balancing to minimize data motion and speed up analysis. Instead of migrating data into memory from disk, an IMDG analyzes data in place. Results also are stored and combined in memory, minimizing file I/O to calculate the final results. By eliminating these overheads, IMDGs dramatically reduce network usage and thereby shorten analysis time.

Moreover, by simplifying the programming model, IMDGs offer another advantage over popular, disk-based map/reduce platforms. Instead of requiring the application developer to create a key space for identifying objects to be analyzed, they make use of object-oriented query specifications to select objects.  Also, both the analysis (“map”) and merge (“reduce”) codes can be structured as straightforward, object-oriented methods written as if to be executed on a single workstation. These capabilities shorten design time and enable analysis applications to be quickly developed and revised.

The following diagram illustrates a map/reduce analysis of stock trading strategies across a set of stock histories held in the IMDG. A parallel query selects stocks for analysis, and the IMDG analyzes the stocks and merges the results using the supplied methods:

 Running Map/Reduce on an IMDG 

Running Map/Reduce on an IMDG

ScaleOut Grid Computing Edition (GCE) from ScaleOut Software is an example of an IMDG with an integrated data analytics engine. Using it as an example, the following steps demonstrate how an IMDG performs a map/reduce data analysis:

  • The data set to be analyzed in the IMDG originates from one of two sources. In many cases, especially those with tight latency requirements, the application continuously updates the grid as data flows through for processing. Alternatively, the application may stage the data set in the grid from persistent storage via a bulk loading operation. In either case, the IMDG holds the data, creates replicas for high availability, and load-balances it across servers to avoid hot spots.
  • ScaleOut GCE allows a query specification to be written either in Java using filter methods or in C# using the Microsoft language integrated query (LINQ) mechanism. This query specification selects the data to be analyzed, for example, ticker symbols, sales data, machine data, etc.
  • In ScaleOut GCE, the analysis and merge methods can be written either in Java or C#. Since GCE holds the objects to be analyzed or merged in memory, these methods are written without the need to use grid APIs. The analysis method specifies the analysis logic for a single data object selected by the query specification. For example, it might calculate stock trading profits for one company’s recent history of stock prices. The merge method combines the results of analyzing multiple objects and is repeatedly executed as necessary to merge all results. In the above example, it might calculate the average return for stock trades spanning many companies.
  • Using a special API in GCE called “invoke” and supplying the query specification and both the analysis and merge methods, the application starts a map/reduce computation called a “parallel method invocation” (PMI). GCE automatically performs the query, analysis, and merge steps in parallel across all grid servers using a multi-threaded computation engine and then returns the final, merged result back to the application. PMI operations can be performed repeatedly to provide a continuous stream of results. Because GCE avoids batch scheduling and keeps the overhead for starting and running the analysis low, it returns results with minimum latency for near real-time performance.

When using an IMDG, all computations are performed “in-place,” reducing data motion which is the enemy of high performance for map/reduce. Also, the IMDG leverages its features for maximizing scalability and high availability, such as partitioning, peer-to-peer architecture, and load-balancing. In addition, GCE implements special features for ensuring the high availability of map/reduce computations.

Lowering the Complexity Barrier

The map/reduce programming model has generated widespread interest in large part due to the popularity of the Hadoop open source software stack. However, Hadoop introduces a complex programming model and deployment architecture which must be thoroughly understood for Hadoop to be used effectively. For example, applications need to be written to fit Hadoop’s specific parallel execution model, incorporating several specialized elements such as record readers, mappers, combiners, and reducers. The number and interaction of these elements impact performance and require tuning. Beyond this, Hadoop’s execution environment, including the HDFS file system, job tracker (that is, the batch scheduler), and task trackers on each execution node must be deployed and managed. It may take a seasoned Java developer with knowledge of parallel programming weeks to become proficient with Hadoop. These complexities create a steep learning curve which impedes rapid adoption.

In contrast, the IMDG-based approach to map/reduce data analysis eliminates much of Hadoop’s complexity. Its object-oriented approach offers a simpler parallel execution model that reduces development time and eliminates the need for tuning. The user invests much less time in learning the model and focuses more on the analytical challenges of the business problem. Learning curves are flattened, and productivity is increased.

Delivering High Performance

To see the performance benefits of using an IMDG with integrated map/reduce, consider a real-world financial analysis application that  compares various stock trading strategies based on historical market data stored in the IMDG. This application makes use of the IMDG’s analytics engine to perform a map/reduce analysis across all grid servers and merge the results. Each stock history is stored as a separate object within the IMDG, and specific stock histories are selected for analysis using a parallel query. The analysis method evaluates a set of trading strategies across a single stock history, and the merge method combines the results across two stocks. The analytics engine repeatedly executes these methods to analyze all selected stocks and merge the results.

Performance measurements were made for this application using ScaleOut GCE’s IMDG to evaluate throughput scaling as the number of stock histories and grid servers was proportionally increased. As the graph below illustrates, the IMDG delivers linearly scalable throughput (shown as the red line in the graph). An alternative implementation of this application was measured using Hadoop’s map/reduce environment. Hadoop provided linear scaling with about 16X lower throughput (shown as the blue line in the graph) due to significant overhead introduced by file I/O and batch scheduling. By staging the stock history data in the IMDG instead of the Hadoop file system (HDFS), Hadoop’s throughput was increased by about 6X (shown as the green line), although it was still significantly below the IMDG’s throughput due to file I/O between the map and reduce phases.

 Throughput Comparison 

In Summary

With the ever increasing explosion in data for analysis and the need for fast insights on emerging trends, IMDGs offer a highly attractive platform for hosting map/reduce analysis. By simplifying the development model, IMDGs shorten the learning curve in developing analysis codes and eliminate the tuning steps required by more complex platforms. Because IMDGs run the analysis on data already staged in memory and load-balanced across grid servers, file I/O is eliminated and data motion is minimized. IMDGs also provide the infrastructure needed to automatically run analysis code on all grid servers in parallel and then combine the results with minimum latency. The net result is that by using an IMDG, application developers can easily analyze fast-changing, memory-based data and discover data patterns and trends that are vital to a company’s success.


Dr. William L. Bain is founder and CEO of ScaleOut Software, Inc. Bill has a Ph.D. in electrical engineering/parallel computing from Rice University, and he has worked at Bell Labs research, Intel, and Microsoft. Bill founded and ran three start-up companies prior to joining Microsoft. In the most recent company (Valence Research), he developed a distributed Web load-balancing software solution that was acquired by Microsoft and is now called Network Load Balanc­ing within the Windows Server operating system. Dr. Bain holds several patents in computer architecture and distributed computing. As a member of the Seattle-based Alliance of Angels, Dr. Bain is actively involved in entrepreneurship and the angel community.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora sys Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over t Read more…

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains – including and in particular the semiconductor supply chain. In the U.S. – which, like much of the world, relies on Asia for its semiconductors – those efforts have taken shape through the recently... Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

AWS Solution Channel

Shutterstock 1519171757

Running large-scale CFD fire simulations on AWS for

This post was contributed by Matt Broadfoot, Senior Fire Strategy Manager at Amazon Design and Construction, and Antonio Cennamo ProServe Customer Practice Manager, Colin Bridger Principal HPC GTM Specialist, Grigorios Pikoulas ProServe Strategic Program Leader, Neil Ashton Principal, Computational Engineering Product Strategy, Roberto Medar, ProServe HPC Consultant, Taiwo Abioye ProServe Security Consultant, Talib Mahouari ProServe Engagement Manager at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1689646429

Gain a Competitive Edge using Cloud-Based, GPU-Accelerated AI KYC Recommender Systems

Financial services organizations face increased competition for customers from technologies such as FinTechs, mobile banking applications, and online payment systems. To meet this challenge, it is important for organizations to have a deep understanding of their customers. Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear we Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

CXL Brings Datacenter-sized Computing with 3.0 Standard, Thinks Ahead to 4.0

August 2, 2022

A new version of a standard backed by major cloud providers and chip companies could change the way some of the world's largest datacenters and fastest supercomputers are built. The CXL Consortium on Tuesday announced a new specification called CXL 3.0 – also known as Compute Express Link 3.0... Read more…

Inside an Ambitious Play to Shake Up HPC and the Texas Grid

August 2, 2022

With HPC demand ballooning and Moore’s law slowing down, modern supercomputers often undergo exhaustive efficiency efforts aimed at ameliorating exorbitant energy bills and correspondingly large carbon footprints. Others, meanwhile, are asking: is min-maxing the best option, or are there easier paths to reducing the bills and emissions of... Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers


ISC 2022 Booth Video Tours


Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow