Using an In-Memory Data Grid for Near Real-Time Data Analysis

By Nicole Hemsoth

August 6, 2012

by Dr. William Bain, ScaleOut Software, Inc.

Introduction

In today’s competitive world, businesses need to make fast decisions to respond to changing market conditions and to maintain a competitive edge. The explosion of data that must be analyzed to find trends or hidden insights intensifies this challenge. Both the private and public sectors are turning to parallel computing techniques, such as “map/reduce” to quickly sift through large data volumes.

In some cases, it is practical to analyze huge sets of historical, disk-based data over the course of minutes or hours using batch processing platforms such as Hadoop. For example, risk modeling to optimize the handling of insurance claims potentially needs to analyze billions of records and tens of terabytes of data. However, many applications need to continuously analyze relatively small but fast-changing data sets measured in the hundreds of gigabytes and reaching into terabytes.  Examples include clickstream data to optimize online promotions, stock trading data to implement trading strategies, machine log data to tune manufacturing processes, smart grid data, and many more.

Over the last several years, in-memory data grids (IMDGs) have proven their value in storing fast-changing application data and scaling application performance.  More recently, IMDGs have integrated map/reduce analytics into the grid to achieve powerful, easy-to-use analysis and enable near real-time decision making. For example, the following diagram illustrates an IMDG used to store and analyze incoming streams of market and news data to help generate alerts and strategies for optimizing financial operations. This article explains how using an IMDG with integrated map/reduce capabilities can simplify data analysis and provide important competitive advantages.

Real-Time Analytics Engine 

 

What is an In-Memory Data Grid?

By storing fast-changing data within a middleware software tier, IMDGs enable applications to seamlessly scale performance by adding servers that access and update a shared, memory-based data set.  To maximize scalability, IMDGs automatically load-balance data across servers on which the grid is hosted. They also redundantly store data on multiple servers to ensure high availability in case a server or network link fails. Additional capabilities, including eventing and distributed locking, make IMDGs a powerful data storage platform.

IMDGs typically integrate their data storage model with object-oriented programming languages, such as Java and C#. They store data as a collection of objects which are accessible either by specifying an identifying key or by querying object properties. The IMDG’s built-in parallel query mechanism can quickly scan a large data set for objects whose properties match a query specification. This provides an important tool for identifying data to be reviewed or analyzed. The following diagram illustrates the use of parallel query for selecting stock history data.

In Memory Data Grid 

Using an IMDG for Analytics

Without a doubt, the field of data analytics has gained a powerful new tool with the “map/reduce” analysis model, which has recently surged in popularity as open source solutions such as Hadoop have raised awareness. In fact, the roots of the map/reduce pattern date back to pioneering work in the 1980s which originally demonstrated the power of data-parallel computing.

Map/reduce implementations take many forms and are offered as components in several competing frameworks. Nearly all of these solutions are aimed at accelerating data analysis for disk-based data. With some data sets reaching petabytes in size, the benefits are often measured in reducing batch job processing times from hours to minutes for these “big data” analyses.

However, the overhead (and complexity) of disk-based map/reduce platforms is too high for applications which must quickly analyze fast-changing data sets measured in hundreds of gigabytes or terabytes. (Estimates by some analysts indicate that as much as sixty percent of data sets are smaller than ten terabytes.) In many situations, an answer in hours or minutes is not acceptable.  For example, an e-commerce Web site may need to monitor online shopping carts to see which products are selling. A financial services company might need to hone its equity trading strategy as it optimizes its response to fast-changing market conditions.

To address this challenge, leading-edge IMDGs have incorporated map/reduce analytics engines, transforming them from just scalable, memory-based data stores into parallel computing platforms for analyzing data and providing fast, near real-time results. IMDGs leverage the grid’s automatic load-balancing to minimize data motion and speed up analysis. Instead of migrating data into memory from disk, an IMDG analyzes data in place. Results also are stored and combined in memory, minimizing file I/O to calculate the final results. By eliminating these overheads, IMDGs dramatically reduce network usage and thereby shorten analysis time.

Moreover, by simplifying the programming model, IMDGs offer another advantage over popular, disk-based map/reduce platforms. Instead of requiring the application developer to create a key space for identifying objects to be analyzed, they make use of object-oriented query specifications to select objects.  Also, both the analysis (“map”) and merge (“reduce”) codes can be structured as straightforward, object-oriented methods written as if to be executed on a single workstation. These capabilities shorten design time and enable analysis applications to be quickly developed and revised.

The following diagram illustrates a map/reduce analysis of stock trading strategies across a set of stock histories held in the IMDG. A parallel query selects stocks for analysis, and the IMDG analyzes the stocks and merges the results using the supplied methods:

 Running Map/Reduce on an IMDG 

Running Map/Reduce on an IMDG

ScaleOut Grid Computing Edition (GCE) from ScaleOut Software is an example of an IMDG with an integrated data analytics engine. Using it as an example, the following steps demonstrate how an IMDG performs a map/reduce data analysis:

  • The data set to be analyzed in the IMDG originates from one of two sources. In many cases, especially those with tight latency requirements, the application continuously updates the grid as data flows through for processing. Alternatively, the application may stage the data set in the grid from persistent storage via a bulk loading operation. In either case, the IMDG holds the data, creates replicas for high availability, and load-balances it across servers to avoid hot spots.
  • ScaleOut GCE allows a query specification to be written either in Java using filter methods or in C# using the Microsoft language integrated query (LINQ) mechanism. This query specification selects the data to be analyzed, for example, ticker symbols, sales data, machine data, etc.
  • In ScaleOut GCE, the analysis and merge methods can be written either in Java or C#. Since GCE holds the objects to be analyzed or merged in memory, these methods are written without the need to use grid APIs. The analysis method specifies the analysis logic for a single data object selected by the query specification. For example, it might calculate stock trading profits for one company’s recent history of stock prices. The merge method combines the results of analyzing multiple objects and is repeatedly executed as necessary to merge all results. In the above example, it might calculate the average return for stock trades spanning many companies.
  • Using a special API in GCE called “invoke” and supplying the query specification and both the analysis and merge methods, the application starts a map/reduce computation called a “parallel method invocation” (PMI). GCE automatically performs the query, analysis, and merge steps in parallel across all grid servers using a multi-threaded computation engine and then returns the final, merged result back to the application. PMI operations can be performed repeatedly to provide a continuous stream of results. Because GCE avoids batch scheduling and keeps the overhead for starting and running the analysis low, it returns results with minimum latency for near real-time performance.

When using an IMDG, all computations are performed “in-place,” reducing data motion which is the enemy of high performance for map/reduce. Also, the IMDG leverages its features for maximizing scalability and high availability, such as partitioning, peer-to-peer architecture, and load-balancing. In addition, GCE implements special features for ensuring the high availability of map/reduce computations.

Lowering the Complexity Barrier

The map/reduce programming model has generated widespread interest in large part due to the popularity of the Hadoop open source software stack. However, Hadoop introduces a complex programming model and deployment architecture which must be thoroughly understood for Hadoop to be used effectively. For example, applications need to be written to fit Hadoop’s specific parallel execution model, incorporating several specialized elements such as record readers, mappers, combiners, and reducers. The number and interaction of these elements impact performance and require tuning. Beyond this, Hadoop’s execution environment, including the HDFS file system, job tracker (that is, the batch scheduler), and task trackers on each execution node must be deployed and managed. It may take a seasoned Java developer with knowledge of parallel programming weeks to become proficient with Hadoop. These complexities create a steep learning curve which impedes rapid adoption.

In contrast, the IMDG-based approach to map/reduce data analysis eliminates much of Hadoop’s complexity. Its object-oriented approach offers a simpler parallel execution model that reduces development time and eliminates the need for tuning. The user invests much less time in learning the model and focuses more on the analytical challenges of the business problem. Learning curves are flattened, and productivity is increased.

Delivering High Performance

To see the performance benefits of using an IMDG with integrated map/reduce, consider a real-world financial analysis application that  compares various stock trading strategies based on historical market data stored in the IMDG. This application makes use of the IMDG’s analytics engine to perform a map/reduce analysis across all grid servers and merge the results. Each stock history is stored as a separate object within the IMDG, and specific stock histories are selected for analysis using a parallel query. The analysis method evaluates a set of trading strategies across a single stock history, and the merge method combines the results across two stocks. The analytics engine repeatedly executes these methods to analyze all selected stocks and merge the results.

Performance measurements were made for this application using ScaleOut GCE’s IMDG to evaluate throughput scaling as the number of stock histories and grid servers was proportionally increased. As the graph below illustrates, the IMDG delivers linearly scalable throughput (shown as the red line in the graph). An alternative implementation of this application was measured using Hadoop’s map/reduce environment. Hadoop provided linear scaling with about 16X lower throughput (shown as the blue line in the graph) due to significant overhead introduced by file I/O and batch scheduling. By staging the stock history data in the IMDG instead of the Hadoop file system (HDFS), Hadoop’s throughput was increased by about 6X (shown as the green line), although it was still significantly below the IMDG’s throughput due to file I/O between the map and reduce phases.

 Throughput Comparison 

In Summary

With the ever increasing explosion in data for analysis and the need for fast insights on emerging trends, IMDGs offer a highly attractive platform for hosting map/reduce analysis. By simplifying the development model, IMDGs shorten the learning curve in developing analysis codes and eliminate the tuning steps required by more complex platforms. Because IMDGs run the analysis on data already staged in memory and load-balanced across grid servers, file I/O is eliminated and data motion is minimized. IMDGs also provide the infrastructure needed to automatically run analysis code on all grid servers in parallel and then combine the results with minimum latency. The net result is that by using an IMDG, application developers can easily analyze fast-changing, memory-based data and discover data patterns and trends that are vital to a company’s success.

 

Dr. William L. Bain is founder and CEO of ScaleOut Software, Inc. Bill has a Ph.D. in electrical engineering/parallel computing from Rice University, and he has worked at Bell Labs research, Intel, and Microsoft. Bill founded and ran three start-up companies prior to joining Microsoft. In the most recent company (Valence Research), he developed a distributed Web load-balancing software solution that was acquired by Microsoft and is now called Network Load Balanc­ing within the Windows Server operating system. Dr. Bain holds several patents in computer architecture and distributed computing. As a member of the Seattle-based Alliance of Angels, Dr. Bain is actively involved in entrepreneurship and the angel community.

www.scaleoutsoftware.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Stampede2 ‘Shocks’ with New Shock Turbulence Insights

August 19, 2019

Shockwaves play roles in everything from high-speed aircraft to supernovae – and now, supercomputer-powered research from the Texas A&M University and the Texas Advanced Computing Center (TACC) is helping to shed l Read more…

By Oliver Peckham

Nanosheet Transistors: The Last Step in Moore’s Law?

August 19, 2019

Forget for a moment the clamor around the decline of Moore’s Law. It's had a brilliant run, something to be marveled at given it’s not a law at all. Squeezing out the last bit of performance that roughly corresponds Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip using standard CMOS fabrication. At Hot Chips 31 in Stanfor Read more…

By Tiffany Trader

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This