AMD Unveils Teraflop GPU with ECC Support

By Michael Feldman

August 8, 2012

Advanced Micro Devices (AMD) has launched six new FirePro processors for workstation users who want high-end graphics and computation in a single box. One of them promises a teraflop of double precision performance as well as support for error correcting code (ECC) memory. The new offerings also includes two APUs (Accelerated Processing Units) that glue four CPU cores and hundreds of FirePro GPU stream processors onto the same chip.

The straight-up GPU-based cards are the FirePro W9000, W8000, W7000 and W5000. All are meant to provide hefty graphics support as well as respectable number-crunching performance. They are based on AMD’s new Graphics Core Next Architecture, which according to the company is their “first design specifically engineered for general computing.” Application development is supported via C++ AMP (Accelerated Massive Parallelism) and OpenCL, two open standard languages that are meant to offer an alternative to NVIDIA’s CUDA programming framework.

The top-of-the-line W9000 and W8000 are the ones built to chew on heavy-duty numeric codes such as CAD, CAE, medical imaging, and digital content creation, while also providing enough graphics muscle to drive up to six 30-inch displays. Both are double-slot cards that support the newer, faster PCIe Gen3 interface.

Performance-wise, the W9000 and W8000 are rather impressive beasts. The W9000 is the one that will deliver a double precision (DP) teraflop of peak performance. If only 32 bits of precision are required, this same chip will provide a whopping four teraflops in single precision (SP). That outruns NVIDIA’s fastest Tesla GPU (665 DP gigaflops and 1330 SP gigaflops) by a fair margin, although their newer Kepler K10 card edges out the W9000 in the single precision department with 4.58 teraflops, and the upcoming Kepler K20 is likely to be well above a DP teraflop when it’s launched in a few months. The K20 will be NVIDIA’s flagship supercomputing chip, but like these FirePros, will also be tapped for workstation duty.

The most interesting new feature in the FirePro lineup is the addition of ECC support, which is incorporated in the W9000 and W8000 products. ECC is used to insure that errant memory bits flips don’t mess up numeric calculations and is specifically aimed at high performance computing (HPC) codes. NVIDIA introduced this feature into its GPGPU Tesla lineup back in 2009.

The introduction of ECC suggests AMD is taking GPU computing a lot more seriously that it did when it was hawking its non-ECC FireStream GPU cards a few years ago. It also suggest that we may soon see some server-class FirePro offering with this capability in the near future. In fact, ECC actually has limited use in workstations. It’s real value becomes apparent when applications are deployed at scale, across multiple nodes of a cluster, where there is a much more likelihood that flipped memory bits will result in software failures.

ECC aside, the latest FirePro cards have a decent amount of memory and bandwidth for both graphics or computation (and a lot more than the older FireStream offerings). The top-end W9000 sports 6 GB of on-board GDDR5 memory and 264 GB/sec of bandwidth. Those specs are pretty much on par with the latest NVIDIA Tesla modules, but again, the upcoming Kepler parts will probably leapfrog the W9000 in this area. The W9000 card draws 274 watts at peak load and its suggested retail price is $3,999.

For $2,400 less, the W8000 comes with nearly as much number-crunching capability (3.23 SP teraflops and 806 DP gigaflops), but just two-thirds the memory (4 GB) and bandwidth (176 GB/sec). The less muscular W7000 and W5000 represent the mid-range FirePro lineup. Both provide more than one SP teraflop and a token number of DP flops, but they lack ECC support. MSRP is $899 and $599, respectively.

AMD’s new APUs, the FirePro A300 and A320, are a different breed altogether. They represent the chipmaker’s first heterogeneous processors aimed at science and engineering, albeit only for the workstation market. Unlike the company’s previous APUs for desktops and laptops, these latest ones include a lot more GPU heft. That gives users something akin to a mid-range discrete GPU on the same chip as a quad-core CPU. The advantage here is that it’s much easier to share data between the two compute engines on the chip; there’s no need to be sending bytes back and forth across a relatively slow PCIe bus.

These new APUs aren’t computational powerhouses however. At 28nm, there’s just not enough room to lay down a lot of GPU silicon on the same die as a CPU with reasonable-sized memory caches. As a result, AMD is aiming these cards at 2D modeling and entry-level 3D modeling, rather than more demanding applications like CAE and medical imaging.

The 100 watt A300 delivers 736 SP gigaflops and 184 DP gigaflops, with the 65 watt A320 just a tad slower at 693 SP gigaflops and 173 DP gigaflops. From the standpoint of double precision performance, that’s not much better than a top bin Sandy Bridge CPU, but with the APU, of course, you get the added functionality of graphics support, not to mention a lot more SP flops. If you need more compute than the A300 or A320 can provide, AMD offers what they call Discrete Compute Offload, which enables the devices to work with a separate FirePro GPU running in parallel.

For HPC users, perhaps the most interesting news here is that AMD is gearing up its GPU computing portfolio, both for its discrete and heterogeneous lines. What we’re likely seeing are the precursors to server-capable GPUs and APUs that will be aimed at HPC and related types pf applications. In all likelihood, the server GPUs will come first, perhaps as early as this year.

But with NVIDIA’s dominance of the HPC accelerator market and Intel’s imminent entry into that space with its upcoming Knights Corner coprocessor, AMD will have an uphill battle against a couple of formidable competitors. The company’s natural advantage in CPU-GPU integration may eventually give them a leg up when transistor geometries allow teraflop graphics engines to inhabit the same die with multicore CPUs. But until then, AMD will have to play catch up.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This