AMD Unveils Teraflop GPU with ECC Support

By Michael Feldman

August 8, 2012

Advanced Micro Devices (AMD) has launched six new FirePro processors for workstation users who want high-end graphics and computation in a single box. One of them promises a teraflop of double precision performance as well as support for error correcting code (ECC) memory. The new offerings also includes two APUs (Accelerated Processing Units) that glue four CPU cores and hundreds of FirePro GPU stream processors onto the same chip.

The straight-up GPU-based cards are the FirePro W9000, W8000, W7000 and W5000. All are meant to provide hefty graphics support as well as respectable number-crunching performance. They are based on AMD’s new Graphics Core Next Architecture, which according to the company is their “first design specifically engineered for general computing.” Application development is supported via C++ AMP (Accelerated Massive Parallelism) and OpenCL, two open standard languages that are meant to offer an alternative to NVIDIA’s CUDA programming framework.

The top-of-the-line W9000 and W8000 are the ones built to chew on heavy-duty numeric codes such as CAD, CAE, medical imaging, and digital content creation, while also providing enough graphics muscle to drive up to six 30-inch displays. Both are double-slot cards that support the newer, faster PCIe Gen3 interface.

Performance-wise, the W9000 and W8000 are rather impressive beasts. The W9000 is the one that will deliver a double precision (DP) teraflop of peak performance. If only 32 bits of precision are required, this same chip will provide a whopping four teraflops in single precision (SP). That outruns NVIDIA’s fastest Tesla GPU (665 DP gigaflops and 1330 SP gigaflops) by a fair margin, although their newer Kepler K10 card edges out the W9000 in the single precision department with 4.58 teraflops, and the upcoming Kepler K20 is likely to be well above a DP teraflop when it’s launched in a few months. The K20 will be NVIDIA’s flagship supercomputing chip, but like these FirePros, will also be tapped for workstation duty.

The most interesting new feature in the FirePro lineup is the addition of ECC support, which is incorporated in the W9000 and W8000 products. ECC is used to insure that errant memory bits flips don’t mess up numeric calculations and is specifically aimed at high performance computing (HPC) codes. NVIDIA introduced this feature into its GPGPU Tesla lineup back in 2009.

The introduction of ECC suggests AMD is taking GPU computing a lot more seriously that it did when it was hawking its non-ECC FireStream GPU cards a few years ago. It also suggest that we may soon see some server-class FirePro offering with this capability in the near future. In fact, ECC actually has limited use in workstations. It’s real value becomes apparent when applications are deployed at scale, across multiple nodes of a cluster, where there is a much more likelihood that flipped memory bits will result in software failures.

ECC aside, the latest FirePro cards have a decent amount of memory and bandwidth for both graphics or computation (and a lot more than the older FireStream offerings). The top-end W9000 sports 6 GB of on-board GDDR5 memory and 264 GB/sec of bandwidth. Those specs are pretty much on par with the latest NVIDIA Tesla modules, but again, the upcoming Kepler parts will probably leapfrog the W9000 in this area. The W9000 card draws 274 watts at peak load and its suggested retail price is $3,999.

For $2,400 less, the W8000 comes with nearly as much number-crunching capability (3.23 SP teraflops and 806 DP gigaflops), but just two-thirds the memory (4 GB) and bandwidth (176 GB/sec). The less muscular W7000 and W5000 represent the mid-range FirePro lineup. Both provide more than one SP teraflop and a token number of DP flops, but they lack ECC support. MSRP is $899 and $599, respectively.

AMD’s new APUs, the FirePro A300 and A320, are a different breed altogether. They represent the chipmaker’s first heterogeneous processors aimed at science and engineering, albeit only for the workstation market. Unlike the company’s previous APUs for desktops and laptops, these latest ones include a lot more GPU heft. That gives users something akin to a mid-range discrete GPU on the same chip as a quad-core CPU. The advantage here is that it’s much easier to share data between the two compute engines on the chip; there’s no need to be sending bytes back and forth across a relatively slow PCIe bus.

These new APUs aren’t computational powerhouses however. At 28nm, there’s just not enough room to lay down a lot of GPU silicon on the same die as a CPU with reasonable-sized memory caches. As a result, AMD is aiming these cards at 2D modeling and entry-level 3D modeling, rather than more demanding applications like CAE and medical imaging.

The 100 watt A300 delivers 736 SP gigaflops and 184 DP gigaflops, with the 65 watt A320 just a tad slower at 693 SP gigaflops and 173 DP gigaflops. From the standpoint of double precision performance, that’s not much better than a top bin Sandy Bridge CPU, but with the APU, of course, you get the added functionality of graphics support, not to mention a lot more SP flops. If you need more compute than the A300 or A320 can provide, AMD offers what they call Discrete Compute Offload, which enables the devices to work with a separate FirePro GPU running in parallel.

For HPC users, perhaps the most interesting news here is that AMD is gearing up its GPU computing portfolio, both for its discrete and heterogeneous lines. What we’re likely seeing are the precursors to server-capable GPUs and APUs that will be aimed at HPC and related types pf applications. In all likelihood, the server GPUs will come first, perhaps as early as this year.

But with NVIDIA’s dominance of the HPC accelerator market and Intel’s imminent entry into that space with its upcoming Knights Corner coprocessor, AMD will have an uphill battle against a couple of formidable competitors. The company’s natural advantage in CPU-GPU integration may eventually give them a leg up when transistor geometries allow teraflop graphics engines to inhabit the same die with multicore CPUs. But until then, AMD will have to play catch up.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This