AMD Unveils Teraflop GPU with ECC Support

By Michael Feldman

August 8, 2012

Advanced Micro Devices (AMD) has launched six new FirePro processors for workstation users who want high-end graphics and computation in a single box. One of them promises a teraflop of double precision performance as well as support for error correcting code (ECC) memory. The new offerings also includes two APUs (Accelerated Processing Units) that glue four CPU cores and hundreds of FirePro GPU stream processors onto the same chip.

The straight-up GPU-based cards are the FirePro W9000, W8000, W7000 and W5000. All are meant to provide hefty graphics support as well as respectable number-crunching performance. They are based on AMD’s new Graphics Core Next Architecture, which according to the company is their “first design specifically engineered for general computing.” Application development is supported via C++ AMP (Accelerated Massive Parallelism) and OpenCL, two open standard languages that are meant to offer an alternative to NVIDIA’s CUDA programming framework.

The top-of-the-line W9000 and W8000 are the ones built to chew on heavy-duty numeric codes such as CAD, CAE, medical imaging, and digital content creation, while also providing enough graphics muscle to drive up to six 30-inch displays. Both are double-slot cards that support the newer, faster PCIe Gen3 interface.

Performance-wise, the W9000 and W8000 are rather impressive beasts. The W9000 is the one that will deliver a double precision (DP) teraflop of peak performance. If only 32 bits of precision are required, this same chip will provide a whopping four teraflops in single precision (SP). That outruns NVIDIA’s fastest Tesla GPU (665 DP gigaflops and 1330 SP gigaflops) by a fair margin, although their newer Kepler K10 card edges out the W9000 in the single precision department with 4.58 teraflops, and the upcoming Kepler K20 is likely to be well above a DP teraflop when it’s launched in a few months. The K20 will be NVIDIA’s flagship supercomputing chip, but like these FirePros, will also be tapped for workstation duty.

The most interesting new feature in the FirePro lineup is the addition of ECC support, which is incorporated in the W9000 and W8000 products. ECC is used to insure that errant memory bits flips don’t mess up numeric calculations and is specifically aimed at high performance computing (HPC) codes. NVIDIA introduced this feature into its GPGPU Tesla lineup back in 2009.

The introduction of ECC suggests AMD is taking GPU computing a lot more seriously that it did when it was hawking its non-ECC FireStream GPU cards a few years ago. It also suggest that we may soon see some server-class FirePro offering with this capability in the near future. In fact, ECC actually has limited use in workstations. It’s real value becomes apparent when applications are deployed at scale, across multiple nodes of a cluster, where there is a much more likelihood that flipped memory bits will result in software failures.

ECC aside, the latest FirePro cards have a decent amount of memory and bandwidth for both graphics or computation (and a lot more than the older FireStream offerings). The top-end W9000 sports 6 GB of on-board GDDR5 memory and 264 GB/sec of bandwidth. Those specs are pretty much on par with the latest NVIDIA Tesla modules, but again, the upcoming Kepler parts will probably leapfrog the W9000 in this area. The W9000 card draws 274 watts at peak load and its suggested retail price is $3,999.

For $2,400 less, the W8000 comes with nearly as much number-crunching capability (3.23 SP teraflops and 806 DP gigaflops), but just two-thirds the memory (4 GB) and bandwidth (176 GB/sec). The less muscular W7000 and W5000 represent the mid-range FirePro lineup. Both provide more than one SP teraflop and a token number of DP flops, but they lack ECC support. MSRP is $899 and $599, respectively.

AMD’s new APUs, the FirePro A300 and A320, are a different breed altogether. They represent the chipmaker’s first heterogeneous processors aimed at science and engineering, albeit only for the workstation market. Unlike the company’s previous APUs for desktops and laptops, these latest ones include a lot more GPU heft. That gives users something akin to a mid-range discrete GPU on the same chip as a quad-core CPU. The advantage here is that it’s much easier to share data between the two compute engines on the chip; there’s no need to be sending bytes back and forth across a relatively slow PCIe bus.

These new APUs aren’t computational powerhouses however. At 28nm, there’s just not enough room to lay down a lot of GPU silicon on the same die as a CPU with reasonable-sized memory caches. As a result, AMD is aiming these cards at 2D modeling and entry-level 3D modeling, rather than more demanding applications like CAE and medical imaging.

The 100 watt A300 delivers 736 SP gigaflops and 184 DP gigaflops, with the 65 watt A320 just a tad slower at 693 SP gigaflops and 173 DP gigaflops. From the standpoint of double precision performance, that’s not much better than a top bin Sandy Bridge CPU, but with the APU, of course, you get the added functionality of graphics support, not to mention a lot more SP flops. If you need more compute than the A300 or A320 can provide, AMD offers what they call Discrete Compute Offload, which enables the devices to work with a separate FirePro GPU running in parallel.

For HPC users, perhaps the most interesting news here is that AMD is gearing up its GPU computing portfolio, both for its discrete and heterogeneous lines. What we’re likely seeing are the precursors to server-capable GPUs and APUs that will be aimed at HPC and related types pf applications. In all likelihood, the server GPUs will come first, perhaps as early as this year.

But with NVIDIA’s dominance of the HPC accelerator market and Intel’s imminent entry into that space with its upcoming Knights Corner coprocessor, AMD will have an uphill battle against a couple of formidable competitors. The company’s natural advantage in CPU-GPU integration may eventually give them a leg up when transistor geometries allow teraflop graphics engines to inhabit the same die with multicore CPUs. But until then, AMD will have to play catch up.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

EU Ratchets up the Race to Exascale Computing

March 29, 2017

The race to expand HPC infrastructure, including exascale machines, to advance national and regional interests ratcheted up a notch yesterday with announcement that seven European countries – Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This