AMD Unveils Teraflop GPU with ECC Support

By Michael Feldman

August 8, 2012

Advanced Micro Devices (AMD) has launched six new FirePro processors for workstation users who want high-end graphics and computation in a single box. One of them promises a teraflop of double precision performance as well as support for error correcting code (ECC) memory. The new offerings also includes two APUs (Accelerated Processing Units) that glue four CPU cores and hundreds of FirePro GPU stream processors onto the same chip.

The straight-up GPU-based cards are the FirePro W9000, W8000, W7000 and W5000. All are meant to provide hefty graphics support as well as respectable number-crunching performance. They are based on AMD’s new Graphics Core Next Architecture, which according to the company is their “first design specifically engineered for general computing.” Application development is supported via C++ AMP (Accelerated Massive Parallelism) and OpenCL, two open standard languages that are meant to offer an alternative to NVIDIA’s CUDA programming framework.

The top-of-the-line W9000 and W8000 are the ones built to chew on heavy-duty numeric codes such as CAD, CAE, medical imaging, and digital content creation, while also providing enough graphics muscle to drive up to six 30-inch displays. Both are double-slot cards that support the newer, faster PCIe Gen3 interface.

Performance-wise, the W9000 and W8000 are rather impressive beasts. The W9000 is the one that will deliver a double precision (DP) teraflop of peak performance. If only 32 bits of precision are required, this same chip will provide a whopping four teraflops in single precision (SP). That outruns NVIDIA’s fastest Tesla GPU (665 DP gigaflops and 1330 SP gigaflops) by a fair margin, although their newer Kepler K10 card edges out the W9000 in the single precision department with 4.58 teraflops, and the upcoming Kepler K20 is likely to be well above a DP teraflop when it’s launched in a few months. The K20 will be NVIDIA’s flagship supercomputing chip, but like these FirePros, will also be tapped for workstation duty.

The most interesting new feature in the FirePro lineup is the addition of ECC support, which is incorporated in the W9000 and W8000 products. ECC is used to insure that errant memory bits flips don’t mess up numeric calculations and is specifically aimed at high performance computing (HPC) codes. NVIDIA introduced this feature into its GPGPU Tesla lineup back in 2009.

The introduction of ECC suggests AMD is taking GPU computing a lot more seriously that it did when it was hawking its non-ECC FireStream GPU cards a few years ago. It also suggest that we may soon see some server-class FirePro offering with this capability in the near future. In fact, ECC actually has limited use in workstations. It’s real value becomes apparent when applications are deployed at scale, across multiple nodes of a cluster, where there is a much more likelihood that flipped memory bits will result in software failures.

ECC aside, the latest FirePro cards have a decent amount of memory and bandwidth for both graphics or computation (and a lot more than the older FireStream offerings). The top-end W9000 sports 6 GB of on-board GDDR5 memory and 264 GB/sec of bandwidth. Those specs are pretty much on par with the latest NVIDIA Tesla modules, but again, the upcoming Kepler parts will probably leapfrog the W9000 in this area. The W9000 card draws 274 watts at peak load and its suggested retail price is $3,999.

For $2,400 less, the W8000 comes with nearly as much number-crunching capability (3.23 SP teraflops and 806 DP gigaflops), but just two-thirds the memory (4 GB) and bandwidth (176 GB/sec). The less muscular W7000 and W5000 represent the mid-range FirePro lineup. Both provide more than one SP teraflop and a token number of DP flops, but they lack ECC support. MSRP is $899 and $599, respectively.

AMD’s new APUs, the FirePro A300 and A320, are a different breed altogether. They represent the chipmaker’s first heterogeneous processors aimed at science and engineering, albeit only for the workstation market. Unlike the company’s previous APUs for desktops and laptops, these latest ones include a lot more GPU heft. That gives users something akin to a mid-range discrete GPU on the same chip as a quad-core CPU. The advantage here is that it’s much easier to share data between the two compute engines on the chip; there’s no need to be sending bytes back and forth across a relatively slow PCIe bus.

These new APUs aren’t computational powerhouses however. At 28nm, there’s just not enough room to lay down a lot of GPU silicon on the same die as a CPU with reasonable-sized memory caches. As a result, AMD is aiming these cards at 2D modeling and entry-level 3D modeling, rather than more demanding applications like CAE and medical imaging.

The 100 watt A300 delivers 736 SP gigaflops and 184 DP gigaflops, with the 65 watt A320 just a tad slower at 693 SP gigaflops and 173 DP gigaflops. From the standpoint of double precision performance, that’s not much better than a top bin Sandy Bridge CPU, but with the APU, of course, you get the added functionality of graphics support, not to mention a lot more SP flops. If you need more compute than the A300 or A320 can provide, AMD offers what they call Discrete Compute Offload, which enables the devices to work with a separate FirePro GPU running in parallel.

For HPC users, perhaps the most interesting news here is that AMD is gearing up its GPU computing portfolio, both for its discrete and heterogeneous lines. What we’re likely seeing are the precursors to server-capable GPUs and APUs that will be aimed at HPC and related types pf applications. In all likelihood, the server GPUs will come first, perhaps as early as this year.

But with NVIDIA’s dominance of the HPC accelerator market and Intel’s imminent entry into that space with its upcoming Knights Corner coprocessor, AMD will have an uphill battle against a couple of formidable competitors. The company’s natural advantage in CPU-GPU integration may eventually give them a leg up when transistor geometries allow teraflop graphics engines to inhabit the same die with multicore CPUs. But until then, AMD will have to play catch up.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This