Analyst Weighs In on 64-Bit ARM

By Michael Feldman

August 16, 2012

In a recent report in Real World Technologies, chip guru David Kanter dissects the new 64-bit ARM design (ARMv8) and what it might mean to the IT landscape. His take on the architecture is almost uniformly positive, noting that not only did the designers manage to develop an elegant instruction set that was backwardly compatible with the existing ISA, but they also took the extra step to jettison a few of the poorly designed features of the 32-bit architecture.

Announced in October 2011, 64-bit ARM is the biggest makeover the processor architecture has received in its 26-year history.  The first implementation in 1985, ARM1, was a 32-bit chip developed for Acorn Computers (ARM = Acorn RISC Machine). Although the architecture never caught on in the PC biz, it’s simple, low-power RISC design made it a natural for embedded/mobile SoC applications and microcontrollers.

While the server and personal computer world moved on to 64 bits, ARM was safely ensconced in the embedded/mobile space where 32 bits of addressing (basically 4 GB) was plenty.  But now that devices like tablets and other mobile gadgets are pushing up against this limit, a larger address reach will soon become necessary. Also, the expanded address reach will allow ARM chips for the first time to enter the server market and compete against the x86, the processor architecture that has dominated the datacenter for decades.

In a sense, ARM is trying to duplicate the success of the x86 when it made its own jump from 32 to 64 bits in 2000.  In that case, the 64-bit Intel Xeons and AMD Opertons ended up displacing a lot of their high-end RISC-based competition  — especially SPARC and Power. If 64-bit ARM ends up cutting into the x86 share of the server market, it would be fitting revenge for the RISC faithful.

As mentioned, before the most critical enabling feature for 64-bit ARM is extending the address space. Although 64 bits could reach 16 exabytes, there’s little application demand to access data at that scale.  For the time being, only 48 bits will be used to form an address, which gives software a 256 GB address reach.  Presumably, additional address bits can be tacked on in the future as applications scale up.

With the ARMv8 design, integer and floating point structures are also being enhanced, with all general purpose registers being extended to 64 bits.  The floating point design has been tweaked to support IEEE754-2008, including additional  instructions to make the architecture compliant with the standard.

For vector operations, the changes are more extensive. In the 32-bit spec, the SIMD design (known as NEON) already contained 32 64-bit registers, which could be aliased to 16 128-bit pseudo-registers.  For the 64-bit design, that’s been extended to 32 128-bit registers, with the lower half being used if only 64 bit values are needed.  Not only does that double the capacity of the vector unit, it makes for a somewhat cleaner arrangement. The SIMD design also adds full IEEE support and double precision floating point operations.

Curiously missing form ARMv8 is multi-threading support, a feature common to all other major server CPUs — x86, SPARC, Power, and even HPC processors like the Blue Gene/Q ASIC (PowerPC A2). Kanter speculates that the ARM designers decided to forego multi-threading for now since it is notoriously difficult to validate, and the new design already encapsulated a lot of changes.  Although the jury is still out on the aggregate benefit of this feature, for certain classes of software, the lack of multi-threading support could turn out to be a decided disadvantage.

Overall though, Kanter likes what ARM developers have come up with, which he says is “clearly a sound design that was well though out and should enable reasonable implementations.”  As he notes though, there are currently no chip implementations around to judge the the architecture’s performance in the field.

But within a couple of years, we should see multiple 64-bit ARM SoCs at various segments of the market — everything from high performance computers to workstations. Applied Micro already has an FPGA implementation of ARMv8, which the company unveiled in October 2011 and subsequently demonstrated running on an Apache web server. Samsung, Qualcomm, Calxeda, Microsoft, Marvell and NVIDIA have either stated plans to implement a chip or have already bought licenses. At this point, NVIDIA is the only one that has specifically talked about a 64-bit ARM implementation (Project Denver) aimed at HPC, but Calxeda also has high performance computing on its radar.

Samsung is a particularly interesting entrant to the market. The Korean firm is mostly in the consumer electronics business and its involvement in the server space is currently confined to supplying DRAM and flash components. But Samsung would make a formidable competitor against Intel in the server chip arena if the company funneled its resources there. While Intel has more than twice Samsung’s revenue today, the latter company is growing at a much faster rate.

That led industry analyst firm IC Insights to project that Samsung would eclipse Intel as the world’s largest supplier of semiconductor parts by 2014. Coincidentally, that’s that same year the company plans to roll out its first 64-bit ARM server chips. As Kanter concluded: “Certainly, the next few years should be very interesting.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This