Analyst Weighs In on 64-Bit ARM

By Michael Feldman

August 16, 2012

In a recent report in Real World Technologies, chip guru David Kanter dissects the new 64-bit ARM design (ARMv8) and what it might mean to the IT landscape. His take on the architecture is almost uniformly positive, noting that not only did the designers manage to develop an elegant instruction set that was backwardly compatible with the existing ISA, but they also took the extra step to jettison a few of the poorly designed features of the 32-bit architecture.

Announced in October 2011, 64-bit ARM is the biggest makeover the processor architecture has received in its 26-year history.  The first implementation in 1985, ARM1, was a 32-bit chip developed for Acorn Computers (ARM = Acorn RISC Machine). Although the architecture never caught on in the PC biz, it’s simple, low-power RISC design made it a natural for embedded/mobile SoC applications and microcontrollers.

While the server and personal computer world moved on to 64 bits, ARM was safely ensconced in the embedded/mobile space where 32 bits of addressing (basically 4 GB) was plenty.  But now that devices like tablets and other mobile gadgets are pushing up against this limit, a larger address reach will soon become necessary. Also, the expanded address reach will allow ARM chips for the first time to enter the server market and compete against the x86, the processor architecture that has dominated the datacenter for decades.

In a sense, ARM is trying to duplicate the success of the x86 when it made its own jump from 32 to 64 bits in 2000.  In that case, the 64-bit Intel Xeons and AMD Opertons ended up displacing a lot of their high-end RISC-based competition  — especially SPARC and Power. If 64-bit ARM ends up cutting into the x86 share of the server market, it would be fitting revenge for the RISC faithful.

As mentioned, before the most critical enabling feature for 64-bit ARM is extending the address space. Although 64 bits could reach 16 exabytes, there’s little application demand to access data at that scale.  For the time being, only 48 bits will be used to form an address, which gives software a 256 GB address reach.  Presumably, additional address bits can be tacked on in the future as applications scale up.

With the ARMv8 design, integer and floating point structures are also being enhanced, with all general purpose registers being extended to 64 bits.  The floating point design has been tweaked to support IEEE754-2008, including additional  instructions to make the architecture compliant with the standard.

For vector operations, the changes are more extensive. In the 32-bit spec, the SIMD design (known as NEON) already contained 32 64-bit registers, which could be aliased to 16 128-bit pseudo-registers.  For the 64-bit design, that’s been extended to 32 128-bit registers, with the lower half being used if only 64 bit values are needed.  Not only does that double the capacity of the vector unit, it makes for a somewhat cleaner arrangement. The SIMD design also adds full IEEE support and double precision floating point operations.

Curiously missing form ARMv8 is multi-threading support, a feature common to all other major server CPUs — x86, SPARC, Power, and even HPC processors like the Blue Gene/Q ASIC (PowerPC A2). Kanter speculates that the ARM designers decided to forego multi-threading for now since it is notoriously difficult to validate, and the new design already encapsulated a lot of changes.  Although the jury is still out on the aggregate benefit of this feature, for certain classes of software, the lack of multi-threading support could turn out to be a decided disadvantage.

Overall though, Kanter likes what ARM developers have come up with, which he says is “clearly a sound design that was well though out and should enable reasonable implementations.”  As he notes though, there are currently no chip implementations around to judge the the architecture’s performance in the field.

But within a couple of years, we should see multiple 64-bit ARM SoCs at various segments of the market — everything from high performance computers to workstations. Applied Micro already has an FPGA implementation of ARMv8, which the company unveiled in October 2011 and subsequently demonstrated running on an Apache web server. Samsung, Qualcomm, Calxeda, Microsoft, Marvell and NVIDIA have either stated plans to implement a chip or have already bought licenses. At this point, NVIDIA is the only one that has specifically talked about a 64-bit ARM implementation (Project Denver) aimed at HPC, but Calxeda also has high performance computing on its radar.

Samsung is a particularly interesting entrant to the market. The Korean firm is mostly in the consumer electronics business and its involvement in the server space is currently confined to supplying DRAM and flash components. But Samsung would make a formidable competitor against Intel in the server chip arena if the company funneled its resources there. While Intel has more than twice Samsung’s revenue today, the latter company is growing at a much faster rate.

That led industry analyst firm IC Insights to project that Samsung would eclipse Intel as the world’s largest supplier of semiconductor parts by 2014. Coincidentally, that’s that same year the company plans to roll out its first 64-bit ARM server chips. As Kanter concluded: “Certainly, the next few years should be very interesting.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This