Adapteva Unveils 64-Core Chip

By Michael Feldman

August 22, 2012

Chipmaker Adapteva is sampling its 4th-generation multicore processor, known as Epiphany-IV. The 64-core chip delivers a peak performance of 100 gigaflops and draws just two watts of power, yielding a stunning 50 gigaflops/watt. The engineering samples were manufactured by GLOBALFOUNDRIES on its latest 28nm process technology.

Based in LEXINGTON, Massachusetts, Adapteva is in the business of developing ultra-efficient floating point accelerators. Andreas Olofsson, a former chip engineer at Texas Instruments and Analog Devices, founded the company in 2008, and gathered $2.5 million from various VCs and private investors. With that shoestring budget, he managed to produce four generations of the Epiphany architecture, including two actual chips. The technology is initially aimed at the mobile and embedded market, but Olofsson also has designs on penetrating the supercomputing space.

Epiphany is essentially a stripped down general-purpose RISC CPU that throws out almost everything but the number-crunching silicon. But since it doesn’t incorporate features needed by operating systems, like memory management, it relies on a host processor to feed it application kernels in the same manner as a GPGPU. The current implementation supports single precision floating point only, but plans are already in the works for a double precision implementation.

The general layout of Epiphany is a 2D mesh of simple cores, which talk to each other via a high-speed interconnect.  In that sense, it looks more like Intel’s manycore Xeon Phi than a graphics processor, but without the x86 ISA baggage (but also without the benefit of the x86 ecosystem).

The latest Epiphany chip, which was spec’d out last fall, runs at a relatively slow 800MHz.  But thanks to its highly parallel design and simplified cores, its 50 gigaflops/watt energy efficiency is among the best in the business. NVIDIA’s new K10 GPU computing card can hit about 20 single precision gigaflops/watt, but that also includes 8GB of GDDR5 memory and a few other on-board components, so it’s not an apples-to-apples comparison. Regardless, a 100 gigaflop chip drawing a couple of watts is a significant achievement.

The downside of the design is that it uses Adapteva’s own proprietary ISA, so there are no ready-made software tools that developers can tap into. “Everybody is very impressed by the numbers,” Olofsson told HPCwire. “They just haven’t quite been convinced they can program this thing.”

That has now changed.  In conjunction with the 28nm samples, Adapteva has also released its own OpenCL compiler wrapped in their new software developer kit (SDK). The compiler is an adaptation of Brown Deer Technology’s OpenCL implementation developed for ARM and x86 platforms. Brown Deer provides tools and support for high performance computing applications and is especially focused on acceleration technologies based on GPUs and FPGAs. The Adapteva implementation means developers can now use standard OpenCL source to program the Epiphany processor.
Olofsson says they chose OpenCL because it’s a recognized open standard that is being used for heterogeneous computing platforms in all the segments Adapteva is interested in. In particular, it’s getting some traction on heterogeneous platforms in the embedded space, where GPUs are increasingly being targeted to general-purpose computing.  “The way we are pitching [Epiphany] is that OpenCL GPGPUs may not be good at everything, because of their architectural limitations,” say Olofsson. “So why not put another accelerator next to it that is also OpenCL-programmable.”  

Adapteva is putting the SDK through its paces using existing OpenCL codes like 2D Fast Fourier Transform (FFT) and multi-body physics algorithms that were downloaded off the Internet. The company is currently using an x86-based board for these test runs, but since OpenCL has bindings for C/C++, essentially any commodity CPU is fair game as the host driver. Adapteva’s SDK is currently in beta form and is being released to the company’s early access partners.

As far as getting the Epiphany chips onto useful platforms, that’s still a work in progress. At least some of the engineering samples of the 28nm chip will go to Bittware, an early customer of Adapteva’s. Bittware used the early 16-core, 32-gigaflop version of Epiphany on its custom PCIe boards.  Those products are aimed at military and industrial application for things like embedded signal processing. Because of the need to minimize power usage in embedded computing, Epiphany is a good fit for this application domain.  At least one more vendor has signed up to develop Epiphany-based PCIe boards, but that company is not ready to go public just yet.

Adapteva’s market aspirations extend beyond the military-industrial complex though. Olofsson believes Epiphany is ideal for mobile computing, and eventually HPC.  With regard to the former, Adapteva is planning to use the new chip to demonstrate face detection, an application aimed at devices like smartphones and tablets. Face detection and recognition rely on very compute-intensive algorithms, which is fine if you’ve got a server or two to spare, but it’s beyond the number-crunching capabilities of most mobile-grade CPUs and GPUs today.

Other flop-hungry applications that could find a home on in this market include augmented overlays, gesture recognition, real-time speech recognition, realistic game physics, and computational photography. Like mobile-based face detection/recognition, all of these require lots of computational performance operating within very restricted power envelopes.

For high performance computing, the path is a little more complex. For starters, someone has to build a Epiphany-based PCIe card suitable for HPC servers, and then an OEM has to be enticed to support that board. To deliver a reasonable amount of computation for  a server — say, a teraflop or so — you would need multiple Epiphany chips glued to a card, which would necessitate a PCIe expansion setup of some sort. Not an impossibility, but probably not a job for a do-it-yourselfer.

More fundamentally though, the architecture has to add support for double precision floating point to be taken seriously for HPC (although applications like seismic modeling, image and audio processing, and video analysis are fine with single precision).  
In any case, double precision is already on Adapteva’s roadmap. “We’ll definitely have something next year,” says Olofsson.

Beyond that, the company has plans on the drawing board to scale this architecture up to the teraflop/watt realm. Following a Moore’s Law trajectory, that would mean that by 2018 a 7nm Epiphany processor could house 1,000 cores and deliver a whopping two teraflops.  Since such a chip would draw the same two watts as the current 100 gigaflops version, it could easily provide the foundation for an exascale supercomputer. Or a killer tablet.

 


 

Related Articles

Adapteva Builds Manycore Processor That Will Deliver 70 Gigaflops/Watt

Startup Launches Manycore Floating Point Acceleration Technology

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This