Adapteva Unveils 64-Core Chip

By Michael Feldman

August 22, 2012

Chipmaker Adapteva is sampling its 4th-generation multicore processor, known as Epiphany-IV. The 64-core chip delivers a peak performance of 100 gigaflops and draws just two watts of power, yielding a stunning 50 gigaflops/watt. The engineering samples were manufactured by GLOBALFOUNDRIES on its latest 28nm process technology.

Based in LEXINGTON, Massachusetts, Adapteva is in the business of developing ultra-efficient floating point accelerators. Andreas Olofsson, a former chip engineer at Texas Instruments and Analog Devices, founded the company in 2008, and gathered $2.5 million from various VCs and private investors. With that shoestring budget, he managed to produce four generations of the Epiphany architecture, including two actual chips. The technology is initially aimed at the mobile and embedded market, but Olofsson also has designs on penetrating the supercomputing space.

Epiphany is essentially a stripped down general-purpose RISC CPU that throws out almost everything but the number-crunching silicon. But since it doesn’t incorporate features needed by operating systems, like memory management, it relies on a host processor to feed it application kernels in the same manner as a GPGPU. The current implementation supports single precision floating point only, but plans are already in the works for a double precision implementation.

The general layout of Epiphany is a 2D mesh of simple cores, which talk to each other via a high-speed interconnect.  In that sense, it looks more like Intel’s manycore Xeon Phi than a graphics processor, but without the x86 ISA baggage (but also without the benefit of the x86 ecosystem).

The latest Epiphany chip, which was spec’d out last fall, runs at a relatively slow 800MHz.  But thanks to its highly parallel design and simplified cores, its 50 gigaflops/watt energy efficiency is among the best in the business. NVIDIA’s new K10 GPU computing card can hit about 20 single precision gigaflops/watt, but that also includes 8GB of GDDR5 memory and a few other on-board components, so it’s not an apples-to-apples comparison. Regardless, a 100 gigaflop chip drawing a couple of watts is a significant achievement.

The downside of the design is that it uses Adapteva’s own proprietary ISA, so there are no ready-made software tools that developers can tap into. “Everybody is very impressed by the numbers,” Olofsson told HPCwire. “They just haven’t quite been convinced they can program this thing.”

That has now changed.  In conjunction with the 28nm samples, Adapteva has also released its own OpenCL compiler wrapped in their new software developer kit (SDK). The compiler is an adaptation of Brown Deer Technology’s OpenCL implementation developed for ARM and x86 platforms. Brown Deer provides tools and support for high performance computing applications and is especially focused on acceleration technologies based on GPUs and FPGAs. The Adapteva implementation means developers can now use standard OpenCL source to program the Epiphany processor.
Olofsson says they chose OpenCL because it’s a recognized open standard that is being used for heterogeneous computing platforms in all the segments Adapteva is interested in. In particular, it’s getting some traction on heterogeneous platforms in the embedded space, where GPUs are increasingly being targeted to general-purpose computing.  “The way we are pitching [Epiphany] is that OpenCL GPGPUs may not be good at everything, because of their architectural limitations,” say Olofsson. “So why not put another accelerator next to it that is also OpenCL-programmable.”  

Adapteva is putting the SDK through its paces using existing OpenCL codes like 2D Fast Fourier Transform (FFT) and multi-body physics algorithms that were downloaded off the Internet. The company is currently using an x86-based board for these test runs, but since OpenCL has bindings for C/C++, essentially any commodity CPU is fair game as the host driver. Adapteva’s SDK is currently in beta form and is being released to the company’s early access partners.

As far as getting the Epiphany chips onto useful platforms, that’s still a work in progress. At least some of the engineering samples of the 28nm chip will go to Bittware, an early customer of Adapteva’s. Bittware used the early 16-core, 32-gigaflop version of Epiphany on its custom PCIe boards.  Those products are aimed at military and industrial application for things like embedded signal processing. Because of the need to minimize power usage in embedded computing, Epiphany is a good fit for this application domain.  At least one more vendor has signed up to develop Epiphany-based PCIe boards, but that company is not ready to go public just yet.

Adapteva’s market aspirations extend beyond the military-industrial complex though. Olofsson believes Epiphany is ideal for mobile computing, and eventually HPC.  With regard to the former, Adapteva is planning to use the new chip to demonstrate face detection, an application aimed at devices like smartphones and tablets. Face detection and recognition rely on very compute-intensive algorithms, which is fine if you’ve got a server or two to spare, but it’s beyond the number-crunching capabilities of most mobile-grade CPUs and GPUs today.

Other flop-hungry applications that could find a home on in this market include augmented overlays, gesture recognition, real-time speech recognition, realistic game physics, and computational photography. Like mobile-based face detection/recognition, all of these require lots of computational performance operating within very restricted power envelopes.

For high performance computing, the path is a little more complex. For starters, someone has to build a Epiphany-based PCIe card suitable for HPC servers, and then an OEM has to be enticed to support that board. To deliver a reasonable amount of computation for  a server — say, a teraflop or so — you would need multiple Epiphany chips glued to a card, which would necessitate a PCIe expansion setup of some sort. Not an impossibility, but probably not a job for a do-it-yourselfer.

More fundamentally though, the architecture has to add support for double precision floating point to be taken seriously for HPC (although applications like seismic modeling, image and audio processing, and video analysis are fine with single precision).  
In any case, double precision is already on Adapteva’s roadmap. “We’ll definitely have something next year,” says Olofsson.

Beyond that, the company has plans on the drawing board to scale this architecture up to the teraflop/watt realm. Following a Moore’s Law trajectory, that would mean that by 2018 a 7nm Epiphany processor could house 1,000 cores and deliver a whopping two teraflops.  Since such a chip would draw the same two watts as the current 100 gigaflops version, it could easily provide the foundation for an exascale supercomputer. Or a killer tablet.

 


 

Related Articles

Adapteva Builds Manycore Processor That Will Deliver 70 Gigaflops/Watt

Startup Launches Manycore Floating Point Acceleration Technology

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This