Adapteva Unveils 64-Core Chip

By Michael Feldman

August 22, 2012

Chipmaker Adapteva is sampling its 4th-generation multicore processor, known as Epiphany-IV. The 64-core chip delivers a peak performance of 100 gigaflops and draws just two watts of power, yielding a stunning 50 gigaflops/watt. The engineering samples were manufactured by GLOBALFOUNDRIES on its latest 28nm process technology.

Based in LEXINGTON, Massachusetts, Adapteva is in the business of developing ultra-efficient floating point accelerators. Andreas Olofsson, a former chip engineer at Texas Instruments and Analog Devices, founded the company in 2008, and gathered $2.5 million from various VCs and private investors. With that shoestring budget, he managed to produce four generations of the Epiphany architecture, including two actual chips. The technology is initially aimed at the mobile and embedded market, but Olofsson also has designs on penetrating the supercomputing space.

Epiphany is essentially a stripped down general-purpose RISC CPU that throws out almost everything but the number-crunching silicon. But since it doesn’t incorporate features needed by operating systems, like memory management, it relies on a host processor to feed it application kernels in the same manner as a GPGPU. The current implementation supports single precision floating point only, but plans are already in the works for a double precision implementation.

The general layout of Epiphany is a 2D mesh of simple cores, which talk to each other via a high-speed interconnect.  In that sense, it looks more like Intel’s manycore Xeon Phi than a graphics processor, but without the x86 ISA baggage (but also without the benefit of the x86 ecosystem).

The latest Epiphany chip, which was spec’d out last fall, runs at a relatively slow 800MHz.  But thanks to its highly parallel design and simplified cores, its 50 gigaflops/watt energy efficiency is among the best in the business. NVIDIA’s new K10 GPU computing card can hit about 20 single precision gigaflops/watt, but that also includes 8GB of GDDR5 memory and a few other on-board components, so it’s not an apples-to-apples comparison. Regardless, a 100 gigaflop chip drawing a couple of watts is a significant achievement.

The downside of the design is that it uses Adapteva’s own proprietary ISA, so there are no ready-made software tools that developers can tap into. “Everybody is very impressed by the numbers,” Olofsson told HPCwire. “They just haven’t quite been convinced they can program this thing.”

That has now changed.  In conjunction with the 28nm samples, Adapteva has also released its own OpenCL compiler wrapped in their new software developer kit (SDK). The compiler is an adaptation of Brown Deer Technology’s OpenCL implementation developed for ARM and x86 platforms. Brown Deer provides tools and support for high performance computing applications and is especially focused on acceleration technologies based on GPUs and FPGAs. The Adapteva implementation means developers can now use standard OpenCL source to program the Epiphany processor.
Olofsson says they chose OpenCL because it’s a recognized open standard that is being used for heterogeneous computing platforms in all the segments Adapteva is interested in. In particular, it’s getting some traction on heterogeneous platforms in the embedded space, where GPUs are increasingly being targeted to general-purpose computing.  “The way we are pitching [Epiphany] is that OpenCL GPGPUs may not be good at everything, because of their architectural limitations,” say Olofsson. “So why not put another accelerator next to it that is also OpenCL-programmable.”  

Adapteva is putting the SDK through its paces using existing OpenCL codes like 2D Fast Fourier Transform (FFT) and multi-body physics algorithms that were downloaded off the Internet. The company is currently using an x86-based board for these test runs, but since OpenCL has bindings for C/C++, essentially any commodity CPU is fair game as the host driver. Adapteva’s SDK is currently in beta form and is being released to the company’s early access partners.

As far as getting the Epiphany chips onto useful platforms, that’s still a work in progress. At least some of the engineering samples of the 28nm chip will go to Bittware, an early customer of Adapteva’s. Bittware used the early 16-core, 32-gigaflop version of Epiphany on its custom PCIe boards.  Those products are aimed at military and industrial application for things like embedded signal processing. Because of the need to minimize power usage in embedded computing, Epiphany is a good fit for this application domain.  At least one more vendor has signed up to develop Epiphany-based PCIe boards, but that company is not ready to go public just yet.

Adapteva’s market aspirations extend beyond the military-industrial complex though. Olofsson believes Epiphany is ideal for mobile computing, and eventually HPC.  With regard to the former, Adapteva is planning to use the new chip to demonstrate face detection, an application aimed at devices like smartphones and tablets. Face detection and recognition rely on very compute-intensive algorithms, which is fine if you’ve got a server or two to spare, but it’s beyond the number-crunching capabilities of most mobile-grade CPUs and GPUs today.

Other flop-hungry applications that could find a home on in this market include augmented overlays, gesture recognition, real-time speech recognition, realistic game physics, and computational photography. Like mobile-based face detection/recognition, all of these require lots of computational performance operating within very restricted power envelopes.

For high performance computing, the path is a little more complex. For starters, someone has to build a Epiphany-based PCIe card suitable for HPC servers, and then an OEM has to be enticed to support that board. To deliver a reasonable amount of computation for  a server — say, a teraflop or so — you would need multiple Epiphany chips glued to a card, which would necessitate a PCIe expansion setup of some sort. Not an impossibility, but probably not a job for a do-it-yourselfer.

More fundamentally though, the architecture has to add support for double precision floating point to be taken seriously for HPC (although applications like seismic modeling, image and audio processing, and video analysis are fine with single precision).  
In any case, double precision is already on Adapteva’s roadmap. “We’ll definitely have something next year,” says Olofsson.

Beyond that, the company has plans on the drawing board to scale this architecture up to the teraflop/watt realm. Following a Moore’s Law trajectory, that would mean that by 2018 a 7nm Epiphany processor could house 1,000 cores and deliver a whopping two teraflops.  Since such a chip would draw the same two watts as the current 100 gigaflops version, it could easily provide the foundation for an exascale supercomputer. Or a killer tablet.

 


 

Related Articles

Adapteva Builds Manycore Processor That Will Deliver 70 Gigaflops/Watt

Startup Launches Manycore Floating Point Acceleration Technology

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conferen Read more…

By Tiffany Trader

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This