Adapteva Unveils 64-Core Chip

By Michael Feldman

August 22, 2012

Chipmaker Adapteva is sampling its 4th-generation multicore processor, known as Epiphany-IV. The 64-core chip delivers a peak performance of 100 gigaflops and draws just two watts of power, yielding a stunning 50 gigaflops/watt. The engineering samples were manufactured by GLOBALFOUNDRIES on its latest 28nm process technology.

Based in LEXINGTON, Massachusetts, Adapteva is in the business of developing ultra-efficient floating point accelerators. Andreas Olofsson, a former chip engineer at Texas Instruments and Analog Devices, founded the company in 2008, and gathered $2.5 million from various VCs and private investors. With that shoestring budget, he managed to produce four generations of the Epiphany architecture, including two actual chips. The technology is initially aimed at the mobile and embedded market, but Olofsson also has designs on penetrating the supercomputing space.

Epiphany is essentially a stripped down general-purpose RISC CPU that throws out almost everything but the number-crunching silicon. But since it doesn’t incorporate features needed by operating systems, like memory management, it relies on a host processor to feed it application kernels in the same manner as a GPGPU. The current implementation supports single precision floating point only, but plans are already in the works for a double precision implementation.

The general layout of Epiphany is a 2D mesh of simple cores, which talk to each other via a high-speed interconnect.  In that sense, it looks more like Intel’s manycore Xeon Phi than a graphics processor, but without the x86 ISA baggage (but also without the benefit of the x86 ecosystem).

The latest Epiphany chip, which was spec’d out last fall, runs at a relatively slow 800MHz.  But thanks to its highly parallel design and simplified cores, its 50 gigaflops/watt energy efficiency is among the best in the business. NVIDIA’s new K10 GPU computing card can hit about 20 single precision gigaflops/watt, but that also includes 8GB of GDDR5 memory and a few other on-board components, so it’s not an apples-to-apples comparison. Regardless, a 100 gigaflop chip drawing a couple of watts is a significant achievement.

The downside of the design is that it uses Adapteva’s own proprietary ISA, so there are no ready-made software tools that developers can tap into. “Everybody is very impressed by the numbers,” Olofsson told HPCwire. “They just haven’t quite been convinced they can program this thing.”

That has now changed.  In conjunction with the 28nm samples, Adapteva has also released its own OpenCL compiler wrapped in their new software developer kit (SDK). The compiler is an adaptation of Brown Deer Technology’s OpenCL implementation developed for ARM and x86 platforms. Brown Deer provides tools and support for high performance computing applications and is especially focused on acceleration technologies based on GPUs and FPGAs. The Adapteva implementation means developers can now use standard OpenCL source to program the Epiphany processor.
Olofsson says they chose OpenCL because it’s a recognized open standard that is being used for heterogeneous computing platforms in all the segments Adapteva is interested in. In particular, it’s getting some traction on heterogeneous platforms in the embedded space, where GPUs are increasingly being targeted to general-purpose computing.  “The way we are pitching [Epiphany] is that OpenCL GPGPUs may not be good at everything, because of their architectural limitations,” say Olofsson. “So why not put another accelerator next to it that is also OpenCL-programmable.”  

Adapteva is putting the SDK through its paces using existing OpenCL codes like 2D Fast Fourier Transform (FFT) and multi-body physics algorithms that were downloaded off the Internet. The company is currently using an x86-based board for these test runs, but since OpenCL has bindings for C/C++, essentially any commodity CPU is fair game as the host driver. Adapteva’s SDK is currently in beta form and is being released to the company’s early access partners.

As far as getting the Epiphany chips onto useful platforms, that’s still a work in progress. At least some of the engineering samples of the 28nm chip will go to Bittware, an early customer of Adapteva’s. Bittware used the early 16-core, 32-gigaflop version of Epiphany on its custom PCIe boards.  Those products are aimed at military and industrial application for things like embedded signal processing. Because of the need to minimize power usage in embedded computing, Epiphany is a good fit for this application domain.  At least one more vendor has signed up to develop Epiphany-based PCIe boards, but that company is not ready to go public just yet.

Adapteva’s market aspirations extend beyond the military-industrial complex though. Olofsson believes Epiphany is ideal for mobile computing, and eventually HPC.  With regard to the former, Adapteva is planning to use the new chip to demonstrate face detection, an application aimed at devices like smartphones and tablets. Face detection and recognition rely on very compute-intensive algorithms, which is fine if you’ve got a server or two to spare, but it’s beyond the number-crunching capabilities of most mobile-grade CPUs and GPUs today.

Other flop-hungry applications that could find a home on in this market include augmented overlays, gesture recognition, real-time speech recognition, realistic game physics, and computational photography. Like mobile-based face detection/recognition, all of these require lots of computational performance operating within very restricted power envelopes.

For high performance computing, the path is a little more complex. For starters, someone has to build a Epiphany-based PCIe card suitable for HPC servers, and then an OEM has to be enticed to support that board. To deliver a reasonable amount of computation for  a server — say, a teraflop or so — you would need multiple Epiphany chips glued to a card, which would necessitate a PCIe expansion setup of some sort. Not an impossibility, but probably not a job for a do-it-yourselfer.

More fundamentally though, the architecture has to add support for double precision floating point to be taken seriously for HPC (although applications like seismic modeling, image and audio processing, and video analysis are fine with single precision).  
In any case, double precision is already on Adapteva’s roadmap. “We’ll definitely have something next year,” says Olofsson.

Beyond that, the company has plans on the drawing board to scale this architecture up to the teraflop/watt realm. Following a Moore’s Law trajectory, that would mean that by 2018 a 7nm Epiphany processor could house 1,000 cores and deliver a whopping two teraflops.  Since such a chip would draw the same two watts as the current 100 gigaflops version, it could easily provide the foundation for an exascale supercomputer. Or a killer tablet.

 


 

Related Articles

Adapteva Builds Manycore Processor That Will Deliver 70 Gigaflops/Watt

Startup Launches Manycore Floating Point Acceleration Technology

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

FPGA-Based Genome Processor Bundles Storage

January 6, 2017

Bio-processor developer Edico Genome is collaborating with storage specialist Dell EMC to bundle computing and storage for analyzing gene-sequencing data. Read more…

By George Leopold

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Deep Learning Paves Way for Better Diagnostics

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This