Intel Parts the Curtains on Xeon Phi… A Little Bit

By Michael Feldman

August 28, 2012

As Intel’s Xeon Phi processor family gets ready to debut later this year, the chipmaker continues to reveal some of the details of its first manycore offering.  Although the company isn’t yet ready to talk speeds and feeds, this week they did divulge some of their design decisions that they believe will make the Xeon Phi coprocessor shine as an HPC accelerator. The new revelations were presented on Tuesday at the IEEE-sponsored Hot Chips conference in Cupertino, California.

The Hot Chips presentation was manned by George Chrysos, chief architect of “Knights Corner,” the code name for Intel’s first Xeon Phi product.  This fall, new chip is scheduled to debut in supercomputers, most notably the 10-petaflop “Stampede” system at the Texas Advanced Computing Center.  Although Knights Corner silicon will act as a coprocessors to the Xeon CPUs in that system, they will represents 80 percent of the total flops.

HPCwire talked with Chrysos (before Hot Chips) to get a preview of what he’d be talking about.  In essence, Intel is divulging some of the architectural details of the core and interconnect design, but is not releasing core counts, processor frequency, or memory bandwidth. That information will be forthcoming at the official product launch, which is more than likely to occur during the Supercomputing Conference (SC12) in November.

The major design goal of the Knights Corner microarchitecture was to pack a lot of number-crunching capability into a very power-efficient package. They did this by gluing a big vector processor onto a bare-bones x86 core.  In fact, according to Chrysos, only two percent of the Knights Corner die is dedicated to decoding x86 instructions.  The majority of the silicon real estate is devoted to the L1 and L2 caches, the memory I/O, and of course, the vector unit.

With regard to the latter, the 512-bit vector unit is the largest ever developed by Intel. Each one can dispatch 8 double precision or 16 single precision SIMD operations (integer or floating point) per clock cycle.  That’s twice as many as can be delivered by the latest x86 CPUs — the Intel Xeon Sandy Bridge and AMD Bulldozer processors.  And since there will be 50-plus cores on Knights Corner, we’re talking over 400 double precision flops per cycle. Even on a 2 GHz processor, that works out to 800 gigaflops. But since Intel is using its latest 22nm technology process, you know they’re going to be much more aggressive than that.

It’s more than just extra-wide vectors though  Chrysos says the design also incorporates other features optimized for HPC-type workloads.  In particular, they added a special math accelerator they call the Extended Map Unit (EMU), which does polynomial approximations of transcendent functions like square roots, reciprocals, exponents, and so.  The idea is to speed up execution of these functions in hardware.  According to Chrysos, it’s the first EMU for an x86-based processor.

The Knights Corner vector unit also includes a scatter-gather capability, another first for the x86 line. Scatter-gather , which is sometime referred to as vector addressing or vector I/O, is a way to optimize storing and fetching of data from non-contiguous memory addresses. It’s especially useful for processing sparse matrices, which is fundamental to many HPC applications.

As far as memory bandwidth, Chrysos didn’t volunteer information in that regard, other than to say the memory subsystem on Knights Corner will be “very competitive.” Multiple memory controllers will be sprinkled among the cores, and, in such a way as to optimize speed and latency.

Which bring us to the Knights Corner cache setup. Like traditional CPUs, the new chip will incorporate cache coherency in hardware, but in this case, extended to handle a manycore environment. On Knights Corner, L2 cache is 512 KB per core — twice the size of those on the Sandy Bridge Xeons. On top of that they’ve added a translation lookaside buffer (TLB) to speed address translation, tag directories (TDs) to snoop across all of the cores’ L2 caches, and a Dcache capability to simultaneously load and store 512 bits per clock cycle. Finally, Intel included a prefetch capability for the L2, to boost the performance when data is streaming from memory.

All of these capabilities are designed to keep the cores well fed with data, and, as much as possible, avoid the much larger amount of time and energy required to access main memory off the chip. According to Chrysos, based on the Spec FP 2006 benchmarks, these cache features in aggregate have increased per core performance by an average of 80 percent.

For CPU-type architectures, cache coherency is pretty much business as usual. This is quite different from the GPU, which relies less on caches and more on maximizing bandwidth for memory streaming and lots of cores to hide latency. Although the general-purpose GPUs, especially the latest from NVIDIA, have cache hierarchies, they are not globally coherent.

NVIDIA, though, does have a more flexible approach. For example, its L1 cache on Fermi, and now Kepler, is user configurable and can be split between L1 cache and scratchpad memory. The L2 cache is just shared across all the streaming multiprocessors, which are roughly analogous to CPU cores. If coherency is to be maintained on the GPU it must be done in software.

Intel believes it has a “fundamental advantage” in its hardware-based cache coherency, since not only does it minimize the more expensive memory I/O, but it is also easier to program. Along those same lines, Intel will continue to promote x86 programmability as a big advantage of Knights Corner compared to the more specialized CUDA- or OpenCL-based approaches of GPUs. All of this is about to tested on the HPC battlefield later this year. Stay tuned.

 


 

Related Articles

Tracking Xeon Phi’s Roots

Intel Will Ship Knights Corner Chip in 2012

Intel Releases Knights Corner ISA, Lays Groundwork for MIC Launch

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This