Intel Parts the Curtains on Xeon Phi… A Little Bit

By Michael Feldman

August 28, 2012

As Intel’s Xeon Phi processor family gets ready to debut later this year, the chipmaker continues to reveal some of the details of its first manycore offering.  Although the company isn’t yet ready to talk speeds and feeds, this week they did divulge some of their design decisions that they believe will make the Xeon Phi coprocessor shine as an HPC accelerator. The new revelations were presented on Tuesday at the IEEE-sponsored Hot Chips conference in Cupertino, California.

The Hot Chips presentation was manned by George Chrysos, chief architect of “Knights Corner,” the code name for Intel’s first Xeon Phi product.  This fall, new chip is scheduled to debut in supercomputers, most notably the 10-petaflop “Stampede” system at the Texas Advanced Computing Center.  Although Knights Corner silicon will act as a coprocessors to the Xeon CPUs in that system, they will represents 80 percent of the total flops.

HPCwire talked with Chrysos (before Hot Chips) to get a preview of what he’d be talking about.  In essence, Intel is divulging some of the architectural details of the core and interconnect design, but is not releasing core counts, processor frequency, or memory bandwidth. That information will be forthcoming at the official product launch, which is more than likely to occur during the Supercomputing Conference (SC12) in November.

The major design goal of the Knights Corner microarchitecture was to pack a lot of number-crunching capability into a very power-efficient package. They did this by gluing a big vector processor onto a bare-bones x86 core.  In fact, according to Chrysos, only two percent of the Knights Corner die is dedicated to decoding x86 instructions.  The majority of the silicon real estate is devoted to the L1 and L2 caches, the memory I/O, and of course, the vector unit.

With regard to the latter, the 512-bit vector unit is the largest ever developed by Intel. Each one can dispatch 8 double precision or 16 single precision SIMD operations (integer or floating point) per clock cycle.  That’s twice as many as can be delivered by the latest x86 CPUs — the Intel Xeon Sandy Bridge and AMD Bulldozer processors.  And since there will be 50-plus cores on Knights Corner, we’re talking over 400 double precision flops per cycle. Even on a 2 GHz processor, that works out to 800 gigaflops. But since Intel is using its latest 22nm technology process, you know they’re going to be much more aggressive than that.

It’s more than just extra-wide vectors though  Chrysos says the design also incorporates other features optimized for HPC-type workloads.  In particular, they added a special math accelerator they call the Extended Map Unit (EMU), which does polynomial approximations of transcendent functions like square roots, reciprocals, exponents, and so.  The idea is to speed up execution of these functions in hardware.  According to Chrysos, it’s the first EMU for an x86-based processor.

The Knights Corner vector unit also includes a scatter-gather capability, another first for the x86 line. Scatter-gather , which is sometime referred to as vector addressing or vector I/O, is a way to optimize storing and fetching of data from non-contiguous memory addresses. It’s especially useful for processing sparse matrices, which is fundamental to many HPC applications.

As far as memory bandwidth, Chrysos didn’t volunteer information in that regard, other than to say the memory subsystem on Knights Corner will be “very competitive.” Multiple memory controllers will be sprinkled among the cores, and, in such a way as to optimize speed and latency.

Which bring us to the Knights Corner cache setup. Like traditional CPUs, the new chip will incorporate cache coherency in hardware, but in this case, extended to handle a manycore environment. On Knights Corner, L2 cache is 512 KB per core — twice the size of those on the Sandy Bridge Xeons. On top of that they’ve added a translation lookaside buffer (TLB) to speed address translation, tag directories (TDs) to snoop across all of the cores’ L2 caches, and a Dcache capability to simultaneously load and store 512 bits per clock cycle. Finally, Intel included a prefetch capability for the L2, to boost the performance when data is streaming from memory.

All of these capabilities are designed to keep the cores well fed with data, and, as much as possible, avoid the much larger amount of time and energy required to access main memory off the chip. According to Chrysos, based on the Spec FP 2006 benchmarks, these cache features in aggregate have increased per core performance by an average of 80 percent.

For CPU-type architectures, cache coherency is pretty much business as usual. This is quite different from the GPU, which relies less on caches and more on maximizing bandwidth for memory streaming and lots of cores to hide latency. Although the general-purpose GPUs, especially the latest from NVIDIA, have cache hierarchies, they are not globally coherent.

NVIDIA, though, does have a more flexible approach. For example, its L1 cache on Fermi, and now Kepler, is user configurable and can be split between L1 cache and scratchpad memory. The L2 cache is just shared across all the streaming multiprocessors, which are roughly analogous to CPU cores. If coherency is to be maintained on the GPU it must be done in software.

Intel believes it has a “fundamental advantage” in its hardware-based cache coherency, since not only does it minimize the more expensive memory I/O, but it is also easier to program. Along those same lines, Intel will continue to promote x86 programmability as a big advantage of Knights Corner compared to the more specialized CUDA- or OpenCL-based approaches of GPUs. All of this is about to tested on the HPC battlefield later this year. Stay tuned.



Related Articles

Tracking Xeon Phi’s Roots

Intel Will Ship Knights Corner Chip in 2012

Intel Releases Knights Corner ISA, Lays Groundwork for MIC Launch


Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This