Intel Parts the Curtains on Xeon Phi… A Little Bit

By Michael Feldman

August 28, 2012

As Intel’s Xeon Phi processor family gets ready to debut later this year, the chipmaker continues to reveal some of the details of its first manycore offering.  Although the company isn’t yet ready to talk speeds and feeds, this week they did divulge some of their design decisions that they believe will make the Xeon Phi coprocessor shine as an HPC accelerator. The new revelations were presented on Tuesday at the IEEE-sponsored Hot Chips conference in Cupertino, California.

The Hot Chips presentation was manned by George Chrysos, chief architect of “Knights Corner,” the code name for Intel’s first Xeon Phi product.  This fall, new chip is scheduled to debut in supercomputers, most notably the 10-petaflop “Stampede” system at the Texas Advanced Computing Center.  Although Knights Corner silicon will act as a coprocessors to the Xeon CPUs in that system, they will represents 80 percent of the total flops.

HPCwire talked with Chrysos (before Hot Chips) to get a preview of what he’d be talking about.  In essence, Intel is divulging some of the architectural details of the core and interconnect design, but is not releasing core counts, processor frequency, or memory bandwidth. That information will be forthcoming at the official product launch, which is more than likely to occur during the Supercomputing Conference (SC12) in November.

The major design goal of the Knights Corner microarchitecture was to pack a lot of number-crunching capability into a very power-efficient package. They did this by gluing a big vector processor onto a bare-bones x86 core.  In fact, according to Chrysos, only two percent of the Knights Corner die is dedicated to decoding x86 instructions.  The majority of the silicon real estate is devoted to the L1 and L2 caches, the memory I/O, and of course, the vector unit.

With regard to the latter, the 512-bit vector unit is the largest ever developed by Intel. Each one can dispatch 8 double precision or 16 single precision SIMD operations (integer or floating point) per clock cycle.  That’s twice as many as can be delivered by the latest x86 CPUs — the Intel Xeon Sandy Bridge and AMD Bulldozer processors.  And since there will be 50-plus cores on Knights Corner, we’re talking over 400 double precision flops per cycle. Even on a 2 GHz processor, that works out to 800 gigaflops. But since Intel is using its latest 22nm technology process, you know they’re going to be much more aggressive than that.

It’s more than just extra-wide vectors though  Chrysos says the design also incorporates other features optimized for HPC-type workloads.  In particular, they added a special math accelerator they call the Extended Map Unit (EMU), which does polynomial approximations of transcendent functions like square roots, reciprocals, exponents, and so.  The idea is to speed up execution of these functions in hardware.  According to Chrysos, it’s the first EMU for an x86-based processor.

The Knights Corner vector unit also includes a scatter-gather capability, another first for the x86 line. Scatter-gather , which is sometime referred to as vector addressing or vector I/O, is a way to optimize storing and fetching of data from non-contiguous memory addresses. It’s especially useful for processing sparse matrices, which is fundamental to many HPC applications.

As far as memory bandwidth, Chrysos didn’t volunteer information in that regard, other than to say the memory subsystem on Knights Corner will be “very competitive.” Multiple memory controllers will be sprinkled among the cores, and, in such a way as to optimize speed and latency.

Which bring us to the Knights Corner cache setup. Like traditional CPUs, the new chip will incorporate cache coherency in hardware, but in this case, extended to handle a manycore environment. On Knights Corner, L2 cache is 512 KB per core — twice the size of those on the Sandy Bridge Xeons. On top of that they’ve added a translation lookaside buffer (TLB) to speed address translation, tag directories (TDs) to snoop across all of the cores’ L2 caches, and a Dcache capability to simultaneously load and store 512 bits per clock cycle. Finally, Intel included a prefetch capability for the L2, to boost the performance when data is streaming from memory.

All of these capabilities are designed to keep the cores well fed with data, and, as much as possible, avoid the much larger amount of time and energy required to access main memory off the chip. According to Chrysos, based on the Spec FP 2006 benchmarks, these cache features in aggregate have increased per core performance by an average of 80 percent.

For CPU-type architectures, cache coherency is pretty much business as usual. This is quite different from the GPU, which relies less on caches and more on maximizing bandwidth for memory streaming and lots of cores to hide latency. Although the general-purpose GPUs, especially the latest from NVIDIA, have cache hierarchies, they are not globally coherent.

NVIDIA, though, does have a more flexible approach. For example, its L1 cache on Fermi, and now Kepler, is user configurable and can be split between L1 cache and scratchpad memory. The L2 cache is just shared across all the streaming multiprocessors, which are roughly analogous to CPU cores. If coherency is to be maintained on the GPU it must be done in software.

Intel believes it has a “fundamental advantage” in its hardware-based cache coherency, since not only does it minimize the more expensive memory I/O, but it is also easier to program. Along those same lines, Intel will continue to promote x86 programmability as a big advantage of Knights Corner compared to the more specialized CUDA- or OpenCL-based approaches of GPUs. All of this is about to tested on the HPC battlefield later this year. Stay tuned.

 


 

Related Articles

Tracking Xeon Phi’s Roots

Intel Will Ship Knights Corner Chip in 2012

Intel Releases Knights Corner ISA, Lays Groundwork for MIC Launch

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This