HP, Intel Score Petaflop Supercomputer at DOE Lab

By Michael Feldman

September 5, 2012

The US Department of Energy’s National Renewable Energy Laboratory (NREL) has ordered a $10 million HP supercomputer equipped with the latest Intel Xeon CPUs and Xeon Phi coprocessors. When completed in 2013, the system will deliver one petaflop of performance and will take up residence in one of the most energy-efficient datacenters in the world.

The supercomputer will be built in phases with the initial rack of servers scheduled for deployment this November. The first phase will use HP’s ProLiant SL230s and SL250s servers. These will be equipped with the current “Sandy Bridge” Xeons, specifically the new E5-2670 CPUs (8-core 2.6 GHz, 115W). At least some of the SL250s boxes will also host the upcoming “Knights Corner” coprocessor, the first commercial chip in Intel’s new manycore Xeon Phi line. These are due out before the end of the 2012.

The second phase of the HP system will incorporate next year’s “Ivy Bridge” Xeons, built on Intel’s latest 22nm technology. When completed in the summer of 2013, the HP cluster will house about 600 Xeon Phi coprocessors and 3,200 Xeons. Although that’s not a particularly high ratio of accelerators to CPUs, it’s likely that the vector-heavy Xeon Phi silicon will deliver more than half of the total flops for the machine.

While petascale computers are still relatively rare, the more important theme here is energy efficiency. Both the computer and the NREL datacenter (known as the Energy Systems Integration Facility) were designed to minimize power usage. At a cost of $135 million, the new facility, which includes labs and office space, is built to take advantage of the latest warm-water-cooled servers. A big advantage of this technology is that it requires only evaporative coolers for the plumbing. No chillers or mechanical cooling apparatus are needed, reducing power requirements significantly.

According to Steve Hammond, NREL’s Computational Science director, that will make it the most energy-efficient HPC facility in the world when it’s commissioned at the end of September. “We’ve taken a chips-to-bricks approach to datacenters,” Hammond told HPCwire. “We’re managing both the bytes and the BTUs.”

Since a megawatt of electricity costs around a million dollars a year in the US — and even more in Japan and most of Europe — significant savings can be achieved if these facilities can pare down their power consumption. The NREL facility was designed with that goal in mind and is targeting a PUE (power usage effectiveness) of 1.06. So for every unit of power delivered to the computing equipment, only another 0.06 more units will be needed for cooling, power supply losses, and other overhead.

For a large datacenter, that’s nearly unprecedented. According to an EPA study in 2009, the average datacenter was running at a PUE of 1.91. In these facilities, ever watt of power consumed for computing required nearly an additional watt for cooling or was otherwise wasted on transmission losses. As a result, more and more centers are turning to warm-water cooling.

Warm is the keyword here. Intake water for the computing equipment is around room temperature — 75F or thereabouts. Water exiting the servers is approximately 95F and, at NREL, will be recycled to heat the facility. Hammond says that in the future they plan to export the server-warmed water to other buildings on the rest of the campus.

NREL will not only save a nice chunk of change as a result of the energy savings, but the project will also be a showcase for PUE-minimizing design. The power-saving theme also dovetails nicely with the DOE lab’s mission, namely to support research in renewable energy and new energy sources. The HP super will be used to run computer simulations for developing clean energy, advanced solar photovoltaics, wind energy systems, electric vehicles, and renewable fuels.

With regard to the power profile of the petaflop system, HP plans to deliver a full peak petaflop with just a single megawatt. Although that’s not in the same league as an IBM Blue Gene/Q (which delivers well over 2 peak petaflops per MW), its on par with the most efficient GPU-accelerated supercomputers deployed today.

That’s due in no small part to the Xeon Phi coprocessor, which will contribute significantly to the system’s overall energy efficiency. Although Intel has not made public the wattage and performance on the initial Knights Corner chips, they are expected to be competitive with the latest GPUs, in other words, well over a teraflop of double precision number-crunching in under 300 watts.

To uphold the PUE rating of the NREL facility, the HP servers will be primarily warm-water cooled. Not only will that save energy, but it’s also the most practical approach for a petaflop supercomputer that, in this case, is being squeezed into just 1,000 square feet of floor space. The datacenter itself is 10 times that size, but this will give NREL plenty of room for disk and tape storage, not to mention additional HPC systems down the road.

In fact, Hammond says they plan to use the new datacenter for the next two decades, which should take them well into the exascale era. Since the facility can only tap 10MW, NREL will have to wait until those exa-systems fit into that power envelope. The first exaflop supercomputers are expected to draw at least 20MW when they first appear toward the end of this decade.

For now though, the DOE adds yet another petascale supercomputer to its growing roster of elite machines. At $10 million per petaflop, even smaller labs, like NREL, can now tap into computing power that was unheard of just five years ago. In 2008, the first petaflop supercomputer, Roadrunner, cost more than 10 times as much as this HP machine and took up six times as much datacenter real estate. In a few more years, these petaflop systems should be cheap enough and compact enought to be acquired by commercial users. And if these energy-saving technologies continue to be refined, such systems should be relatively inexpensive to run as well.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This