Intel Adds Programming Support for Latest Silicon

By Michael Feldman

September 6, 2012

We’re only a little more than halfway through 2012, but Intel has already announced the 2013 versions Parallel Studio XE and Cluster Studio XE, two software suites that support x86-based parallel programming for high performance computing and beyond. Intel refreshes their software development offerings each year at about this time to sync up its tool support with the latest and greatest silicon and to add new features for developers. And since the chipmaker has been busy churning out new microarchitectures, there’s lots of new software gadgetry.

The refresh will be especially interesting for HPC developers, since Intel is including full support for its upcoming Xeon Phi coprocessor, the chipmaker’s manycore product line that is set to debut before the end of the year. Although Intel had beta versions of some of these Phi-capable tools and libraries prior to this, the 2013 toolset will provide complete support for HPC programmers developing codes for Knights Corner, the company’s first commercial manycore offering.

By design, Xeon CPUs and Xeon Phi share the same basic x86 ISA. However, the SIMD instructions and vector width are not shared, so it’s up to the compiler and libraries to abstract away that difference by automatically generating the appropriate code for the intended target — which it does. But as we’ve reported before, tuning applications for optimal performance on Xeon Phi is more than likely going to involve code changes. Nevertheless, the ability to do a simple recompile and link on existing code to get a working Xeon Phi executable will remove a lot of pain and suffering while porting HPC applications.

The new Parallel Studio will also include compiler and tool support for “Ivy Bridge,” the 22nm shrink of the Sandy Bridge microarchitecture. Again, Intel had support for these processors prior to this release, but they’ve been able to tune performance thanks to early customer feedback and in-house experience with the chips. Ivy Bridge parts for desktop and mobile platforms are already in the field; server versions are set to arrive next year.

Support for “Haswell,” Intel’s next microarchitecture following Ivy Bridge, has also been added. Haswell will include interesting goodies like transactional memory support, a feature that is designed to make parallel programming much easier since it automates the protection of shared data across threads. IBM’s Blue Gene/Q chip implements this feature today and it’s no big surprise that Intel has followed suit. The first Haswell CPUs should start shipping in 2013, although the server chips are not likely to arrive until the following year.

Beyond just supporting new silicon, Intel has also added a bunch of enhancements designed to make programming and debugging parallel apps easier. Some of major new features include:

Java profiling: Although Java is not used much in HPC codes, some financial applications do wrap Java around their performance-sensitive algorithms. This new profiling capability could help those users determine if those code bits are causing bottlenecks.

CPU power analysis: This is used to determine the sleep state of the processor to make sure unused resources are in their proper low-power mode. Obviously, if unused cores are spinning rather than sleeping, that just heats up the datacenter and make the utility companies richer.

Pointer checking: An option for the C/C++ compiler that determines when a pointer with a specified address range (one attached to a malloc, array or other data structure) starts accessing data outside its specified limits. This can be quite a useful feature since rogue pointers can silently corrupt your data, which as far as programmers are concerned, is the devil’s work.

Heap growth analysis: Intel added a variety of new ways to run down memory leaks. Tracking them manually with a debugger or printf statement can be one of the most frustrating and tedious endeavors. Even if this feature only works some of the time, it’s still worth it.

Conditional numerical reproducibility: This ensures that floating point calculations produce consistent results every time they are executed (assuming the same machine). Since the order of operations can change across different runs, rounding errors can generate somewhat different results, which while still valid, can be problematic for things like test suites and acceptance testing. The only downside to turning on this feature is a 10 to 20 percent performance penalty.

Fortunately, performance is usually going in the other direction. According to Intel Software director James Reinders, these latest C/C++ and Fortran compilers and runtime libraries are speedier than ever and among the best in the business. For AVX floating point operations in particular, the Intel C++ compiler outruns some of the more popular competition by a wide margin. Using the SPECfp_base2006 floating point benchmark, Intel generates code that executes 97 percent faster and 164 percent faster than that of Microsoft’s Visual C++ and GCC, respectively.

Not everyone relies on fast compilers though. Reinders says their most demanding customers will resort to the analysis tools to get the ultimate in performance. “If you just want to do a recompile and link with a library, you can get a good speedup,” he explains. “But if you want to start chasing how many TLB misses you have and get the compiler to push pages around so you can get the top score on something, we support that too.”

Parallel Studio XE 2013 is available starting this week and retails at $1,599-$2,299 — depending on if you want Fortran, C/C++ or both. Cluster Studio XE 2013 is basically a superset of Parallel Studio, adding MPI libraries and analysis tools, as well as a cluster installation utility. It retails for $2,949, and is scheduled to ship in the fourth quarter of 2012.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This