At 100 Gbps, ESnet Puts Network Research on Fast Track

By Nicole Hemsoth

September 12, 2012

When the Department of Energy (DOE) announced the Advanced Networking Initiative in 2009 to develop the first 100 gigabit-per-second (Gbps) production-ready science network, it also included funding for a 100 Gbps experimental testbed and a national dark-fiber testbed. The thinking was that researchers from government institutions, universities and industry could use these testbeds to experiment with disruptive network technologies without interfering with traffic on a major production network.

The 100 Gbps testbed provides a facility for researchers to solve the near-term challenges associated with deploying and operating these types of networks, while the dark fiber testbed allows for research into disruptive technologies and approaches that are still not ready for production use.

The testbeds are operated by DOE’s ESnet, the Energy Sciences Network, which is managed by Lawrence Berkeley National Laboratory.

So far about 20 groups have taken advantage of ESnet’s 100 Gbps testbed, which currently connects two DOE supercomputing facilities at 100 Gbps: the National Energy Research Scientific Computing Center (NERSC) in Oakland, Calif., and the Argonne Leadership Computing Facility (ALCF) in Argonne, Ill. Additional connections will include the Oak Ridge Leadership Computing Facility (OLCF) in Oak Ridge, Tenn., at 80 Gbps, and Fermilab in Batavia, Ill., at 50 Gbps.

Recently, the testbed received additional funding for continued operations, providing a unique resource for experimenting with potentially disruptive network technologies. Brian Tierney, who leads ESnet’s Advanced Networking Technologies Group, talks more about the project in this Q&A with Jon Bashor of Berkeley Lab Computing Sciences Communications.

First, can you give us an overview of the testbed, who gets to use it and why it’s important?

Brian Tierney: Originally part of the now-completed Advanced Networking Initiative (funded by the Recovery Act), the testbed features a set of fast end hosts at NERSC and Argonne, with a dedicated 100 Gbps connection linking them. When a researcher is allocated time, his or her project is the only traffic on the testbed, allowing them to run experiments in a controlled environment. One of the challenges in network research is repeatability, so giving a researcher complete control of a 100 Gbps testbed allows the experiment to be re-run multiple times, enabling them to adjust the experiment if needed, leading to more exact results.

The testbed is open to industry, government labs and academia to use, and we accept proposals twice a year. The next proposal deadline is Monday, Oct. 1. It’s a fairly simple proposal process:  just a two to three page description of your proposed research and why you can’t do this research elsewhere.  Proposals are reviewed by an external committee with representatives from academia and industry. So far we’ve had a good mix of high quality projects, some with DOE funding, others are NSF-funded, others from NASA and industry.

Why is 100G research important?

Tierney: Just because the network is 10 times faster does not mean the protocols and middleware will be 10 times faster. Various host-tuning parameters are different, and new data movement protocols or middleware design may be needed.

What’s DOE’s interest in this work?

Tierney: You’ve probably heard about the President’s Big Data Initiative, which was announced in June. Many sources of Big Data are facilities at DOE laboratories, such as the Advance Light Source here at Berkeley Lab, the Advanced Photon Source at Argonne, and the Spallation Neutron Source at Oak Ridge. Then there are experiments like those at the Large Hadron Collider (LHC) in Switzerland, in which DOE is a very active collaborator.

With more experimental facilities coming online and others receiving major upgrades, the datasets are only getting bigger and bigger, which makes them harder to manage and share with other researchers. So DOE is highly interested in exploring new protocols for moving these big datasets, some of which are being explored on the testbed.

What’s been the response from the community?

Tierney: It’s been extremely popular. We officially opened the testbed in January 2012, and it’s been booked almost 24×7 since then. There are some grad students out there who stay up very late sometimes!  So far, we’ve relied on sending announcements to several email lists, presentations at various conferences and workshops, and via our collaborator organizations, as well as working through program managers at DOE and the National Science Foundation for submissions.

Our current policy is to allow each project up to one six-hour slot per day. Six or seven projects are actively using the testbed, and five or six more have been granted access and are now gearing up to begin testing.

One of the most active testbed projects is from Fermilab, one of two Tier 1 sites for LHC data in the U.S. Researchers there are trying to develop innovative middleware for moving large datasets more efficiently. Experiments by staff at NERSC and the leadership computing centers at Argonne and Oak Ridge have also been very active. A number of interesting industry collaborations are using the testbed as well.

What do you think is the reason for this strong response?

Tierney: For the networking research community, there is no other test environment like this that provides researchers the ability to experiment with their ideas “at scale” — which means they don’t have to rely on a local area test loop to prove an idea that is meant to be used on a national backbone. You really need a cross-country environment to test those ideas. And 100 Gbps technology is expensive — none of the research groups could afford to build an environment like this on their own. We’re providing access at no cost.

To my knowledge, there is nothing else out there at 100 Gbps. In addition, we are providing “bare metal” access to the hosts, not just virtual machines. Before each project’s test slot, we boot up that user’s own image on the hosts. We’ve gotten a lot of positive feedback about this model.

Because this is a research testbed, we are strongly encouraging the users to publish their results, and sometimes collaborate with research groups on their papers. One of those, “Protocols for Wide-Area Data-Intensive Applications — Design and Performance Issues” by Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Robertazzi, Eric Pouyoul and myself, will be presented at SC12 in Salt Lake City.

At Berkeley Lab, we’ve been involved with testbeds since the early 1990s. Back then there was BAGNet, the Bay Area Gigabit Network — that’s one gigabit. I also worked on the MAGIC Gigabit Testbed, which tested some of the early ATM (asynchronous transfer mode) equipment. And we are currently talking to other testbed projects, including NSF’s GENI, an academic testbed for software-defined networking, and OFELIA, an OpenFlow experimental environment in Europe.

Can you give a few examples of what you think have been the coolest projects?

Tierney: There have been three separate projects testing RDMA (Remote Direct Memory Access) Over Converged Ethernet, or RoCE. This is a protocol that bypasses traditional TCP and enables InfiniBand protocols to work over the wide area. RoCE uses much less CPU power than TCP to move the same amount of data and is far easier to tune. One of the projects is led by Dantong Yu at Brookhaven National Laboratory; another is led by Professor Martin Swany at Indiana University; and ESnet staff have participated in the third with Orange Silicon Valley, Bay Microsystems, and System Fabric Works. All three are exploring various ways RoCE can work over a wide area network at 10 Gbps and 40 Gbps. The results have been encouraging. In particular, our work with Orange was the first time RoCE was tested over 40 Gbps and showed that data could be moved at up to 96 percent of the peak capacity of the network. There’s a news release about this on our site.

Q: What’s the plan for the next three years?

Tierney: We plan to upgrade the hosts to Intel’s new Sandy Bridge architecture with the third generation PCI Express bus. Our current testbed hosts have a maximum network I/O rate of around 28 Gbps, but with the new hosts we should be able achieve 100 Gbps with a single host. We are also obviously interested in using the facility to test other new equipment, such as some 40 Gbps NICs (network interface cards) we received from Mellanox. We also plan to test brand new 100 Gbps NICs when they become available from the vendor community.

In the past few years, networking in general and ESnet in particular have gained a much higher profile in the research community. What do you think is behind this and where do you see this leading?

Tierney: When Bill Johnston became the head of ESnet in 2003, he brought a strong research background to the job and began to push the boundaries, looking at what was new and different, and to address the unique needs of the research and education community that were not being met by industry. This led to ESnet taking a more active role in leading novel networking research efforts.

We can also point to Big Data. People are realizing that managing big datasets is a big challenge and that the job of managing the data doesn’t always fall to the site where the data is collected. With more and more collaborations, the data is often not stored where the researcher is.

To efficiently move those large datasets, Eli Dart from ESnet is really pushing the notion that end-to-end network performance means disk-to-disk, not site border to border. This is the “Science DMZ” idea that ESnet developed that is now gaining momentum across the entire research and education community. The NSF’s most recent Campus Cyberinfrastructure–Network Infrastructure and Engineering Program (CC-NIE) is now funding many campuses to deploy Science DMZs. And folks are now looking to ESnet for advice and guidance on how to do this. When it comes to solving end host issues and internal network issues, people are also going to our Fasterdata site, a knowledge database which our team developed and which we know has helped many collaborations to improve their application performance. ESnet has also contributed to the development of tools like perfSONAR for finding and fixing bottlenecks in end-to-end networks.

Lastly, I’ve heard ESnet also has a dark fiber testbed. Can you talk about that?

Tierney: That’s a big topic. Let’s save it for another conversation.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This