Now at AMD, John Gustafson Wants to Light a Fire Under GPU Computing

By Michael Feldman

September 13, 2012

AMD looks like it’s getting set to jump back into the GPU computing arena with chips a-blazin. A couple of weeks ago, the company signed up HPC industry-heavyweight John Gustafson as the chief architect for the Graphics Business Unit, what used to known as ATI. Gustafson will essentially fill the CTO role there, driving the technology roadmap and direction for the chipmaker’s discrete GPU business — the Radeon and FirePro lines.

Gustafson is best known for Gustafson’s Law, a partial refute of Amdahl’s Law that redefined conventional wisdom on parallel computing in the modern age. In his most recent position at Intel, he drove research on next-generation computing and storage technologies. Prior to that, he served as the chief exec at Massively Parallel Technologies, a role he took on after leaving his CTO gig at ClearSpeed Technology.

Gustafson’s work at ClearSpeed, a company that built purpose-built floating point accelerators for high performance computing, suggests AMD is interested in applying that expertise to its GPU business. “I suspect that is one of the reasons they brought me in,” he told HPCwire.

Ironically, it was the emergence of general-purpose GPUs by NVIDIA and AMD six years ago that hastened the demise of ClearSpeed, as well as other special-purpose HPC accelerators, like IBM’s PowerXCell 8i Cell processor. As GPUs evolved toward generalized vector processors, it put accelerators on the same path as other commodity chips, significantly narrowing the appeal of custom-built silicon.

Gustafson believes the dual role of the modern GPU, as a graphics engine and compute accelerator, is a solid combo. He sees a lot of overlap between the two domains, given that much of the processor logic for visualization and technical computing can be shared. According to him, compute-specific features don’t end up taking a lot of extra real estate on the die, and in some cases, will actually will save transistors. “People didn’t realize that sometimes the functions done for graphics are exactly what are needed by the HPC community,” explains Gustafson.

But as far as GPU computing is concerned, the company is playing catch up with NVIDIA. Although AMD made an initial investment in the FireStream line of GPU accelerators, its lack of software development support and its reliance on an immature OpenCL programming toolset made for a weaker offering, especially in contrast to NVIDIA, which had built a separate business unit (Tesla) and toolset (CUDA SDK) to drive its GPU computing product line.

But AMD certainly has the wherewithal to make a comeback. The chipmaker’s aggregate GPU business and graphics processor designs are on par with that of NVIDIA’s (in contrast to AMD’s CPU business, which is a distant second to Intel in market share). And although AMD still doesn’t have a mature HPC-oriented software stack to offer, OpenCL has come a long way over the past few years and could begin to challenge CUDA’s current dominance. “I think it is inevitable, especially with both AMD and Intel behind it, that OpenCL will become the de facto solution,” says Gustafson.

From the hardware perspective, the company has been busy refreshing its GPU computing products. Last month, AMD launched two new FirePro cards, the S9000 and S7000 aimed at the server market. The dual-slot S9000 is the more capable one, computationally speaking, sporting ECC memory and 3.23 teraflops of single-precision performance and 806 gigaflops in double-precision performance.

Those numbers are pretty much on par with NVIDIA’s K10 Kepler product, although it’s likely to be a good deal less competitive against the upcoming K20. In any case, multiple teraflops, even the single precision variety, are not to be taken lightly, and this is probably just the beginning of a larger push by AMD. Although he didn’t want to tip his hand too much, Gustafson said he has some “very disruptive ideas for this market… that could dramatically increase the operations per watt, and I think that’s what we need for exascale right now.”

One approach that he’s been kicking around has to do with hardware designs that deliver “good-enough” results. Whether for graphics or computation, Gustafson believes there’s a lot of extra energy efficiency that can be squeezed from the silicon if you match up the application requirements more precisely with the hardware resources needed. He says the industry has tended to sweep those issues under the rug.

At least part of that has to do with matching the precision of the data to the task at hand. In HPC, for example, software tends to default to double precision (64 bits). But if you only need, say, 10 bits to do a calculation, double precision ends up wasting a lot of energy in sending unneeded bits hither and yon across the machine. On the other hand, if the application requires 256-bit accuracy, the hardware should be flexible enough to deal with that as well.

Another way to attack the performance per watt challenge is integrating the GPU logic into a more general-purpose chip, like AMD does with its APU products. While Gustafson thinks that can be a great solution for certain classes of applications that need that type of unified memory model, for others, a dedicated SIMD compute engine with several gigabytes of extremely high bandwidth is what’s called for.

“For about 30 years now, people have been telling me that we’re going to witness a disappearance of discrete accelerators, because their functions will be subsumed into the general-purpose processor,” he says. “But there always seems to be a need for something that is extraordinarily high-powered, but specialized so that you don’t want to make everybody pay for it. I don’t see a change to that.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This