Now at AMD, John Gustafson Wants to Light a Fire Under GPU Computing

By Michael Feldman

September 13, 2012

AMD looks like it’s getting set to jump back into the GPU computing arena with chips a-blazin. A couple of weeks ago, the company signed up HPC industry-heavyweight John Gustafson as the chief architect for the Graphics Business Unit, what used to known as ATI. Gustafson will essentially fill the CTO role there, driving the technology roadmap and direction for the chipmaker’s discrete GPU business — the Radeon and FirePro lines.

Gustafson is best known for Gustafson’s Law, a partial refute of Amdahl’s Law that redefined conventional wisdom on parallel computing in the modern age. In his most recent position at Intel, he drove research on next-generation computing and storage technologies. Prior to that, he served as the chief exec at Massively Parallel Technologies, a role he took on after leaving his CTO gig at ClearSpeed Technology.

Gustafson’s work at ClearSpeed, a company that built purpose-built floating point accelerators for high performance computing, suggests AMD is interested in applying that expertise to its GPU business. “I suspect that is one of the reasons they brought me in,” he told HPCwire.

Ironically, it was the emergence of general-purpose GPUs by NVIDIA and AMD six years ago that hastened the demise of ClearSpeed, as well as other special-purpose HPC accelerators, like IBM’s PowerXCell 8i Cell processor. As GPUs evolved toward generalized vector processors, it put accelerators on the same path as other commodity chips, significantly narrowing the appeal of custom-built silicon.

Gustafson believes the dual role of the modern GPU, as a graphics engine and compute accelerator, is a solid combo. He sees a lot of overlap between the two domains, given that much of the processor logic for visualization and technical computing can be shared. According to him, compute-specific features don’t end up taking a lot of extra real estate on the die, and in some cases, will actually will save transistors. “People didn’t realize that sometimes the functions done for graphics are exactly what are needed by the HPC community,” explains Gustafson.

But as far as GPU computing is concerned, the company is playing catch up with NVIDIA. Although AMD made an initial investment in the FireStream line of GPU accelerators, its lack of software development support and its reliance on an immature OpenCL programming toolset made for a weaker offering, especially in contrast to NVIDIA, which had built a separate business unit (Tesla) and toolset (CUDA SDK) to drive its GPU computing product line.

But AMD certainly has the wherewithal to make a comeback. The chipmaker’s aggregate GPU business and graphics processor designs are on par with that of NVIDIA’s (in contrast to AMD’s CPU business, which is a distant second to Intel in market share). And although AMD still doesn’t have a mature HPC-oriented software stack to offer, OpenCL has come a long way over the past few years and could begin to challenge CUDA’s current dominance. “I think it is inevitable, especially with both AMD and Intel behind it, that OpenCL will become the de facto solution,” says Gustafson.

From the hardware perspective, the company has been busy refreshing its GPU computing products. Last month, AMD launched two new FirePro cards, the S9000 and S7000 aimed at the server market. The dual-slot S9000 is the more capable one, computationally speaking, sporting ECC memory and 3.23 teraflops of single-precision performance and 806 gigaflops in double-precision performance.

Those numbers are pretty much on par with NVIDIA’s K10 Kepler product, although it’s likely to be a good deal less competitive against the upcoming K20. In any case, multiple teraflops, even the single precision variety, are not to be taken lightly, and this is probably just the beginning of a larger push by AMD. Although he didn’t want to tip his hand too much, Gustafson said he has some “very disruptive ideas for this market… that could dramatically increase the operations per watt, and I think that’s what we need for exascale right now.”

One approach that he’s been kicking around has to do with hardware designs that deliver “good-enough” results. Whether for graphics or computation, Gustafson believes there’s a lot of extra energy efficiency that can be squeezed from the silicon if you match up the application requirements more precisely with the hardware resources needed. He says the industry has tended to sweep those issues under the rug.

At least part of that has to do with matching the precision of the data to the task at hand. In HPC, for example, software tends to default to double precision (64 bits). But if you only need, say, 10 bits to do a calculation, double precision ends up wasting a lot of energy in sending unneeded bits hither and yon across the machine. On the other hand, if the application requires 256-bit accuracy, the hardware should be flexible enough to deal with that as well.

Another way to attack the performance per watt challenge is integrating the GPU logic into a more general-purpose chip, like AMD does with its APU products. While Gustafson thinks that can be a great solution for certain classes of applications that need that type of unified memory model, for others, a dedicated SIMD compute engine with several gigabytes of extremely high bandwidth is what’s called for.

“For about 30 years now, people have been telling me that we’re going to witness a disappearance of discrete accelerators, because their functions will be subsumed into the general-purpose processor,” he says. “But there always seems to be a need for something that is extraordinarily high-powered, but specialized so that you don’t want to make everybody pay for it. I don’t see a change to that.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This