Half-Time in the Uber-Cloud

By Wolfgang Gentzsch and Burak Yenier

September 20, 2012

Since its first announcement on June 28 here on HPCwire, and its official start on July 20, the Uber-Cloud Experiment has attracted over 160 industry and research organizations and individuals from 22 countries. They all have one goal: to jointly explore the end-to-end process of remotely accessing technical computing resources sitting in HPC centers and in the cloud. The focus of this experiment is on engineering simulations performed by small and medium enterprises that expect a quantum leap in innovation and competitiveness by using high performance computing.

The benefits of remote access to HPC are widely recognized. We have at our disposal most of the technology needed to access and run our engineering workloads on remote resources. But we still face other challenges more related to the human element. For example, trusting in the resource provider; giving away some control over our applications, data, and resources; security; provider lock-in; software licensing; unfamiliar pay-per-use computing model; and a general lack of clarity in distinguishing between hype and reality.

To explore these hurdles in detail and to learn more about this end-to-end process, we were able to build 20 teams, each consisting of an end-user and their application, the software provider, the computational resource provider, and an HPC and/or CAE expert who manages the team process. Thanks to our participants, the following teams have been established:

Team

Project Description

Anchor Bolt

Simulating steel to concrete fastening capacity for an anchor bolt

Resonance

Electromagnetic simulations of NMR probe heads

Radiofrequency

Radiofrequency field distribution inside heterogeneous human body

Supersonic

Simulation of jet mixing in the supersonic flow with shock

Liquid-Gas

Two-phase flow simulation of separation columns

Wing-Flow

Flow around an aerospace wing

Ship-Hull

Simulation water flow around a hull of the ship

Cement-Flows

Burner simulation with different solid fuels in mining industry

Sprinkler

Simulating water flow through an irrigation water sprinkler

Space Capsule

Aerothermodynamics and stability analysis of a space capsule

Car Acoustics

Low frequency car acoustics

Dosimetry

Numerical EMC and dosimetry with high-res models

Weathermen

Large-scale and high-resolution weather and climate prediction

Wind Turbine

CFD simulations of vertical and horizontal wind turbines

Combustion

Simulating combustion in an IC engine

Blood Flow

Simulation of water/ blood flow inside rotating micro channels

ChinaCFD

CFD using homegrown C/C++ application

Gas Bubbles

Simulation of gas bubbles in a liquid mixing vessel

Side impact

Optimization of the side-door intrusion bars under a crash

ColombiaBio

Analysis of the biological diversity in a geography using R scripts

All 20 of these projects are underway today. Two of them are busy with defining their end-user project, 15 teams are in contact with the assigned computing resources and setting up the project environment, one is working on initiating and monitoring the end-user project execution, one is reviewing the results with the end user, and one team is already documenting the findings of the HPC as a Service process. To illustrate the team process in more detail, we present two of the projects and their current status in more detail.

Simulating new probe design for a medical device

Team Expert: Chris Dagdigian from BioTeam

The team’s end user is faced with a common problem: a periodic need for large compute capacity in order to simulate and refine potential product changes and improvements. The periodic nature of the HPC requirements means that it is not possible to have the desired amount of capacity internally as the company finds it difficult to justify capital expenditure for complex assets that may end up sitting idle for long periods of time.

To date the company has invested in a modest amount of internal HPC capacity sufficient to meet base requirements. Additional HPC resources would allow the end user to greatly expand the sensitivity of current simulations and may enable new product & design initiatives previously written off as “untestable.”

The HPC software being employed is CST Studio, a popular commercial application for electromagnetic simulations of many types. The application is currently operating in the Amazon cloud and the team has successfully completed a series of architecture refinements and scaling benchmarks. The hybrid cloud-bursting architecture allows local HPC resources residing at the end-user site to be utilized along with the Amazon cloud-based resources.

At this point in the project the team is still exploring the scaling limits of the Amazon GPU-equipped EC2 instance types and is beginning new tests and scaling runs designed to test HPC task distribution via MPI. The use of MPI will allow enable them to leverage different EC2 instance type configurations and scale beyond some technical limits imposed by the amount of memory residing within the NVIDIA GPU cards.

They believe they are currently at (or close to) the point in which they are routinely running simulations that would not be technically possible using the local-only resources of the end user. They also intend to begin testing the Amazon EC2 Spot Market, in which cloud-based assets can be obtained from an auction-like marketplace offering deeply significant cost savings over traditional on-demand hourly prices.

Multiphase flows within the cement and mineral industry

Team Expert: Ingo Seipp from science + computing ag

In this project ANSYS CFX is used to simulate a flash dryer in which hot gas is used to evaporate water from a solid. The team consists of FLSmidth as the end user, Bull as the resource provider with its extreme factory (XF) HPC on demand service, ANSYS as the software provider, and science + computing ag as team experts.

FLSmidth is the leading supplier of complete plants, equipment and services to the global minerals and cement industries. The end user needs about four to five days to complete a simulation run on the local IT infrastructure. He would like to reduce the total throughput time of the project and, in a second step, increase the mesh size to refine the results, without investing in hardware, which may not always be utilized full-time. For this, the simulation must be run on more cores and more memory through more nodes connected by a high-speed network.

XF provides 150 teraflops of computing power with InfiniBand, GPUs and currently, about 30 installed applications. Others are added on demand. Users can access XF through an easy-to-use web portal or direct login.

In this project, XF has enabled access to the end user and integrated ANSYS CFX in a web-interface for submitting jobs. For the course of this project licenses have been granted by ANSYS. The end user can manage his ANSYS licenses easily through the portal. The preparations to run the jobs are almost completed now and the first test runs should be able to start shortly.

Announcing Round Two of the Uber-Cloud Experiment

We consider Round One as proof of the concept that: yes, remote access to HPC resources works, and, there is a real need for it! And yes, there are hurdles on the way, but we know how to overcome them.

During the half-time webinar we asked the attendees if they would like to participate in the second round of the Uber-Cloud Experiment. 97 percent answered said they would. Therefore, we decided to start a new round of the experiment immediately after the first round completes. It will run from mid-November to mid-February.

Round Two of the experiment will be more professional. The end-to-end process of identifying, accessing and using remote resources (hardware, software, expertise) will become more structured, standardized, and tools-based. We will also handle more teams and more applications beyond CAE, and offer a list of additional professional services, for example, measuring the team effort. Finally, existing teams will be encouraged to use other resources, existing participants can work in new teams, and new participants can join and form new teams.

For anyone interested in learning more about the experiment or to register for Round Two, go to the Uber-Cloud Experiment website.

About the Authors

Wolfgang Gentzsch and Burak Yenier are the creators and facilitators of the Uber-Cloud Experiment. Wolfgang is an HPC veteran. Having worked in leading positions in research, academia and industry for some 30 years, Wolfgang is now an HPC consultant and the chairman of the ISC Cloud conference series for HPC and Big Data in the Cloud. Burak is the vice president of operations at CashEdge, a software-as-a-service company in Silicon Valley, which provides innovative payments and aggregation solutions to financial institutions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This