Half-Time in the Uber-Cloud

By Wolfgang Gentzsch and Burak Yenier

September 20, 2012

Since its first announcement on June 28 here on HPCwire, and its official start on July 20, the Uber-Cloud Experiment has attracted over 160 industry and research organizations and individuals from 22 countries. They all have one goal: to jointly explore the end-to-end process of remotely accessing technical computing resources sitting in HPC centers and in the cloud. The focus of this experiment is on engineering simulations performed by small and medium enterprises that expect a quantum leap in innovation and competitiveness by using high performance computing.

The benefits of remote access to HPC are widely recognized. We have at our disposal most of the technology needed to access and run our engineering workloads on remote resources. But we still face other challenges more related to the human element. For example, trusting in the resource provider; giving away some control over our applications, data, and resources; security; provider lock-in; software licensing; unfamiliar pay-per-use computing model; and a general lack of clarity in distinguishing between hype and reality.

To explore these hurdles in detail and to learn more about this end-to-end process, we were able to build 20 teams, each consisting of an end-user and their application, the software provider, the computational resource provider, and an HPC and/or CAE expert who manages the team process. Thanks to our participants, the following teams have been established:

Team

Project Description

Anchor Bolt

Simulating steel to concrete fastening capacity for an anchor bolt

Resonance

Electromagnetic simulations of NMR probe heads

Radiofrequency

Radiofrequency field distribution inside heterogeneous human body

Supersonic

Simulation of jet mixing in the supersonic flow with shock

Liquid-Gas

Two-phase flow simulation of separation columns

Wing-Flow

Flow around an aerospace wing

Ship-Hull

Simulation water flow around a hull of the ship

Cement-Flows

Burner simulation with different solid fuels in mining industry

Sprinkler

Simulating water flow through an irrigation water sprinkler

Space Capsule

Aerothermodynamics and stability analysis of a space capsule

Car Acoustics

Low frequency car acoustics

Dosimetry

Numerical EMC and dosimetry with high-res models

Weathermen

Large-scale and high-resolution weather and climate prediction

Wind Turbine

CFD simulations of vertical and horizontal wind turbines

Combustion

Simulating combustion in an IC engine

Blood Flow

Simulation of water/ blood flow inside rotating micro channels

ChinaCFD

CFD using homegrown C/C++ application

Gas Bubbles

Simulation of gas bubbles in a liquid mixing vessel

Side impact

Optimization of the side-door intrusion bars under a crash

ColombiaBio

Analysis of the biological diversity in a geography using R scripts

All 20 of these projects are underway today. Two of them are busy with defining their end-user project, 15 teams are in contact with the assigned computing resources and setting up the project environment, one is working on initiating and monitoring the end-user project execution, one is reviewing the results with the end user, and one team is already documenting the findings of the HPC as a Service process. To illustrate the team process in more detail, we present two of the projects and their current status in more detail.

Simulating new probe design for a medical device

Team Expert: Chris Dagdigian from BioTeam

The team’s end user is faced with a common problem: a periodic need for large compute capacity in order to simulate and refine potential product changes and improvements. The periodic nature of the HPC requirements means that it is not possible to have the desired amount of capacity internally as the company finds it difficult to justify capital expenditure for complex assets that may end up sitting idle for long periods of time.

To date the company has invested in a modest amount of internal HPC capacity sufficient to meet base requirements. Additional HPC resources would allow the end user to greatly expand the sensitivity of current simulations and may enable new product & design initiatives previously written off as “untestable.”

The HPC software being employed is CST Studio, a popular commercial application for electromagnetic simulations of many types. The application is currently operating in the Amazon cloud and the team has successfully completed a series of architecture refinements and scaling benchmarks. The hybrid cloud-bursting architecture allows local HPC resources residing at the end-user site to be utilized along with the Amazon cloud-based resources.

At this point in the project the team is still exploring the scaling limits of the Amazon GPU-equipped EC2 instance types and is beginning new tests and scaling runs designed to test HPC task distribution via MPI. The use of MPI will allow enable them to leverage different EC2 instance type configurations and scale beyond some technical limits imposed by the amount of memory residing within the NVIDIA GPU cards.

They believe they are currently at (or close to) the point in which they are routinely running simulations that would not be technically possible using the local-only resources of the end user. They also intend to begin testing the Amazon EC2 Spot Market, in which cloud-based assets can be obtained from an auction-like marketplace offering deeply significant cost savings over traditional on-demand hourly prices.

Multiphase flows within the cement and mineral industry

Team Expert: Ingo Seipp from science + computing ag

In this project ANSYS CFX is used to simulate a flash dryer in which hot gas is used to evaporate water from a solid. The team consists of FLSmidth as the end user, Bull as the resource provider with its extreme factory (XF) HPC on demand service, ANSYS as the software provider, and science + computing ag as team experts.

FLSmidth is the leading supplier of complete plants, equipment and services to the global minerals and cement industries. The end user needs about four to five days to complete a simulation run on the local IT infrastructure. He would like to reduce the total throughput time of the project and, in a second step, increase the mesh size to refine the results, without investing in hardware, which may not always be utilized full-time. For this, the simulation must be run on more cores and more memory through more nodes connected by a high-speed network.

XF provides 150 teraflops of computing power with InfiniBand, GPUs and currently, about 30 installed applications. Others are added on demand. Users can access XF through an easy-to-use web portal or direct login.

In this project, XF has enabled access to the end user and integrated ANSYS CFX in a web-interface for submitting jobs. For the course of this project licenses have been granted by ANSYS. The end user can manage his ANSYS licenses easily through the portal. The preparations to run the jobs are almost completed now and the first test runs should be able to start shortly.

Announcing Round Two of the Uber-Cloud Experiment

We consider Round One as proof of the concept that: yes, remote access to HPC resources works, and, there is a real need for it! And yes, there are hurdles on the way, but we know how to overcome them.

During the half-time webinar we asked the attendees if they would like to participate in the second round of the Uber-Cloud Experiment. 97 percent answered said they would. Therefore, we decided to start a new round of the experiment immediately after the first round completes. It will run from mid-November to mid-February.

Round Two of the experiment will be more professional. The end-to-end process of identifying, accessing and using remote resources (hardware, software, expertise) will become more structured, standardized, and tools-based. We will also handle more teams and more applications beyond CAE, and offer a list of additional professional services, for example, measuring the team effort. Finally, existing teams will be encouraged to use other resources, existing participants can work in new teams, and new participants can join and form new teams.

For anyone interested in learning more about the experiment or to register for Round Two, go to the Uber-Cloud Experiment website.

About the Authors

Wolfgang Gentzsch and Burak Yenier are the creators and facilitators of the Uber-Cloud Experiment. Wolfgang is an HPC veteran. Having worked in leading positions in research, academia and industry for some 30 years, Wolfgang is now an HPC consultant and the chairman of the ISC Cloud conference series for HPC and Big Data in the Cloud. Burak is the vice president of operations at CashEdge, a software-as-a-service company in Silicon Valley, which provides innovative payments and aggregation solutions to financial institutions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm bulk wafer. With ~50 billion transistors, the chip will enab Read more…

Supercomputer-Powered CRISPR Simulation Lights Path to Better DNA Editing

May 5, 2021

CRISPR-Cas9 – mostly just known as CRISPR – is a powerful genome editing tool that uses an enzyme (Cas9) to slice off sections of DNA and a guide RNA to repair and modify the DNA as desired, opening the door for cure Read more…

LRZ Announces New Phase of SuperMUC-NG Supercomputer with Intel’s ‘Ponte Vecchio’ GPU

May 5, 2021

At the Leibniz Supercomputing Centre (LRZ) in München, Germany – one of the constituent centers of the Gauss Centre for Supercomputing (GCS) – the SuperMUC-NG system has stood tall for several years, placing 15th on Read more…

HPC Simulations Show How Antibodies Quash SARS-CoV-2

May 5, 2021

Following more than a year of rapid-fire research and pharmaceutical development, nearly a billion COVID-19 vaccine doses have been administered around the world, with many of those vaccines proving remarkably effective Read more…

Crystal Ball Gazing at Nvidia: R&D Chief Bill Dally Talks Targets and Approach

May 4, 2021

There’s no quibbling with Nvidia’s success. Entrenched atop the GPU market, Nvidia has ridden its own inventiveness and growing demand for accelerated computing to meet the needs of HPC and AI. Recently it embarked o Read more…

AWS Solution Channel

FLYING WHALES runs CFD workloads 15 times faster on AWS

FLYING WHALES is a French startup that is developing a 60-ton payload cargo airship for the heavy lift and outsize cargo market. The project was born out of France’s ambition to provide efficient, environmentally friendly transportation for collecting wood in remote areas. Read more…

2021 Winter Classic – Coaches Chat

May 4, 2021

The Winter Classic Invitational Student Cluster Competition raged for all last week and now we’re into the week of judging interviews. Time has been flying. So as we wait for results, let’s dive a bit deeper into t Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

Crystal Ball Gazing at Nvidia: R&D Chief Bill Dally Talks Targets and Approach

May 4, 2021

There’s no quibbling with Nvidia’s success. Entrenched atop the GPU market, Nvidia has ridden its own inventiveness and growing demand for accelerated compu Read more…

Intel Invests $3.5 Billion in New Mexico Fab to Focus on Foveros Packaging Technology

May 3, 2021

Intel announced it is investing $3.5 billion in its Rio Rancho, New Mexico, facility to support its advanced 3D manufacturing and packaging technology, Foveros. Read more…

Supercomputer Research Shows Standard Model May Withstand Muon Discrepancy

May 3, 2021

Big news recently struck the physics world: researchers at the Fermi National Accelerator Laboratory (FNAL), in the midst of their Muon g-2 experiment, publishe Read more…

HPC Career Notes: May 2021 Edition

May 3, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it Read more…

NWChemEx: Computational Chemistry Code for the Exascale Era

April 29, 2021

A team working on biofuel research is rewriting the decades-old NWChem software program for the exascale era. The new software, NWChemEx, will enable computatio Read more…

HPE Will Build Singapore’s New National Supercomputer

April 28, 2021

More than two years ago, Singapore’s National Supercomputing Centre (NSCC) announced a $200 million SGD (~$151 million USD) investment to boost its supercomputing power by an order of magnitude. Today, those plans come closer to fruition with the announcement that Hewlett Packard Enterprise (HPE) has been awarded... Read more…

Arm Details Neoverse V1, N2 Platforms with New Mesh Interconnect, Advances Partner Ecosystem

April 27, 2021

Chip designer Arm Holdings is sharing details about its Neoverse V1 and N2 cores, introducing its new CMN-700 interconnect, and showcasing its partners' plans t Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Leading Solution Providers

Contributors

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire