Big Data Engenders New Opportunities and Challenges on Wall Street

By Nicole Hemsoth

September 27, 2012

One of technology’s most pervasive buzzwords echoed in the ears of attendees at this year’s one-day HPC on Wall Street conference in New York City, as panel after panel addressed the challenges and opportunities that big data presents. From the opening remarks regarding Wall Street’s traditional concern of low latency, delivered by Cisco CTO Paul Perez, to the multiple open-ended discussions that took place in concurrent panels, the “big data” problem was a much-discussed topic. 

For this industry, however, the concerns around what the overall technology ecosystem is touting as big data are quite different. The exploding volume of data that other industries are dealing with is compounded in the financial space by regulations mandating massive, long-term storage.

But the industry itself is finding value in the ability to tap those datasets in both real-time and historical context. What this means is that Wall Street is looking for snappy new ways to keep the meaningful data at the fore, while maintaining a monster archive of historical transactions and other data for more leisurely access and analysis.

During the course of a panel on the exploding demands for storage, analytics, risk management and ultra-low latency (not to mention the compute horsepower required), Emile Werr, VP and Head of Enterprise Architecture at NYSE Euronext described the system-wide challenges of massive, swift data across their HPC infrastructure. He noted that, for them, the challenges went far beyond the “three Vs” of big data: volume, variety and velocity. Their entire approach and methodologies had to shift.

The volume and complexity challenges were keenly felt in the context of the volatility of changing systems, new markets, and even new businesses his firm is exploring. Note that NYSE Technologies is the spin-out company from the exchange of the same name, and offers financial services that encompasses an increasingly large buffet of software and services, from custom middleware packages to hosted exchange analysis.

They have had to keep pace with an evolving exchange market for their customers, necessitating new approaches to their system environments on both the hardware and software sides. According to him, these tweaks and new services have allowed them to expand their traditional market business significantly.

Werr, who proudly notes that he’s the “big data guy” at NYSE, says that one thing that isn’t obvious in terms of their requirements is that the data that is fed into their systems is not user-friendly and certainly doesn’t come read-made for BI platforms. This means there is a whole, often invisible layer of complex data enrichment that is required.

But when you’re talking about billions of transactions per day, building systems that can take this unfriendly data and turn it into regulation-friendly, analysis-ready information is a key, ongoing struggle. Still, they think they may have solved some pieces of that system-wide puzzle and they’re marketing their architecture as a big data, HPC problem solver for this industry.

As mentioned earlier, another aspect of NYSE’s “macro data architecture strategy” that Werr defines is the regulatory-plus-storage problem. “We are obligated to maintain data for seven years,” he said, not without some exasperation. “There’s not one system out there that could actually store that data and have it online. Besides, it wouldn’t be practical. It’s old, old data, it’s just used for regulatory needs and then maybe trending over time details.”

But if the big data hype that insists all bytes are a potential goldmine rings with any validity, NYSE Euronext has a solution that could lend some credence to that ideal.  The company has developed a clever system whereupon data is scattered across distributed resources in such a way that makes it possible to provision it on the fly. Using an on-demand approach they’ve refined, the system can serve an array of applications, everything from an historical audit to an analyst’s real-time query.

NYSE Technologies is commercializing its reported success with its inventive macro data architecture, which Werr says has been rolling along nicely in production for four years. While skipping on the specifics, he noted that the system works in harmony with messaging systems and feed handlers designed to capture certain transactions with keen latency.

Those files are generated in small mini-batches and then fired off to the firm’s “transformation-archive farm” that offloads a lot of the ETL processing across a commodity cluster. The data then moves into the enrichment phase where relational models can be constructed and dropped into distributed storage for the rapid, on-demand access capabilities he hinted at earlier. At the prettier end of the process is a services layer that allows for rapid provisioning and access for all applications as well as APIs for systems and schedulers, not to mention a more seamless end-result for that data to be analyzed for any other business purpose.

A well-oiled machine, no? Werr says that it took a lot of determination to climb out of their old paradigm of being a big database shop with the standard Oracle, Sybase, etc. tools. At the heart of that shift is the need for ever-faster ingestion of data.  They’re at the point now where they can load around 20 terabytes per hour into their federated server farm. Since they have a short window of genuine production data, they’re able to then quickly provision that data into sandboxes to allow for more refined operation on specific subsets of that data, or use narrowly defined tools and integration approaches.

Whether or not we want to think abstractly about this big data craze as a mere concept or hype-bubble, the fact remains that the vendors on every conference panel throughout the day seemed to find some element of value in this topic. By presenting the opportunities and challenges of all the hardware and software this technology touches, attendees were left with the impression that the financial industry is in for some major retooling.

Related Articles

Big Data: A View from Wall Street

The Best Kept Secret in Big Analytics?

On Wall Street, The Race to Zero Continues

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This