Big Data Engenders New Opportunities and Challenges on Wall Street

By Nicole Hemsoth

September 27, 2012

One of technology’s most pervasive buzzwords echoed in the ears of attendees at this year’s one-day HPC on Wall Street conference in New York City, as panel after panel addressed the challenges and opportunities that big data presents. From the opening remarks regarding Wall Street’s traditional concern of low latency, delivered by Cisco CTO Paul Perez, to the multiple open-ended discussions that took place in concurrent panels, the “big data” problem was a much-discussed topic. 

For this industry, however, the concerns around what the overall technology ecosystem is touting as big data are quite different. The exploding volume of data that other industries are dealing with is compounded in the financial space by regulations mandating massive, long-term storage.

But the industry itself is finding value in the ability to tap those datasets in both real-time and historical context. What this means is that Wall Street is looking for snappy new ways to keep the meaningful data at the fore, while maintaining a monster archive of historical transactions and other data for more leisurely access and analysis.

During the course of a panel on the exploding demands for storage, analytics, risk management and ultra-low latency (not to mention the compute horsepower required), Emile Werr, VP and Head of Enterprise Architecture at NYSE Euronext described the system-wide challenges of massive, swift data across their HPC infrastructure. He noted that, for them, the challenges went far beyond the “three Vs” of big data: volume, variety and velocity. Their entire approach and methodologies had to shift.

The volume and complexity challenges were keenly felt in the context of the volatility of changing systems, new markets, and even new businesses his firm is exploring. Note that NYSE Technologies is the spin-out company from the exchange of the same name, and offers financial services that encompasses an increasingly large buffet of software and services, from custom middleware packages to hosted exchange analysis.

They have had to keep pace with an evolving exchange market for their customers, necessitating new approaches to their system environments on both the hardware and software sides. According to him, these tweaks and new services have allowed them to expand their traditional market business significantly.

Werr, who proudly notes that he’s the “big data guy” at NYSE, says that one thing that isn’t obvious in terms of their requirements is that the data that is fed into their systems is not user-friendly and certainly doesn’t come read-made for BI platforms. This means there is a whole, often invisible layer of complex data enrichment that is required.

But when you’re talking about billions of transactions per day, building systems that can take this unfriendly data and turn it into regulation-friendly, analysis-ready information is a key, ongoing struggle. Still, they think they may have solved some pieces of that system-wide puzzle and they’re marketing their architecture as a big data, HPC problem solver for this industry.

As mentioned earlier, another aspect of NYSE’s “macro data architecture strategy” that Werr defines is the regulatory-plus-storage problem. “We are obligated to maintain data for seven years,” he said, not without some exasperation. “There’s not one system out there that could actually store that data and have it online. Besides, it wouldn’t be practical. It’s old, old data, it’s just used for regulatory needs and then maybe trending over time details.”

But if the big data hype that insists all bytes are a potential goldmine rings with any validity, NYSE Euronext has a solution that could lend some credence to that ideal.  The company has developed a clever system whereupon data is scattered across distributed resources in such a way that makes it possible to provision it on the fly. Using an on-demand approach they’ve refined, the system can serve an array of applications, everything from an historical audit to an analyst’s real-time query.

NYSE Technologies is commercializing its reported success with its inventive macro data architecture, which Werr says has been rolling along nicely in production for four years. While skipping on the specifics, he noted that the system works in harmony with messaging systems and feed handlers designed to capture certain transactions with keen latency.

Those files are generated in small mini-batches and then fired off to the firm’s “transformation-archive farm” that offloads a lot of the ETL processing across a commodity cluster. The data then moves into the enrichment phase where relational models can be constructed and dropped into distributed storage for the rapid, on-demand access capabilities he hinted at earlier. At the prettier end of the process is a services layer that allows for rapid provisioning and access for all applications as well as APIs for systems and schedulers, not to mention a more seamless end-result for that data to be analyzed for any other business purpose.

A well-oiled machine, no? Werr says that it took a lot of determination to climb out of their old paradigm of being a big database shop with the standard Oracle, Sybase, etc. tools. At the heart of that shift is the need for ever-faster ingestion of data.  They’re at the point now where they can load around 20 terabytes per hour into their federated server farm. Since they have a short window of genuine production data, they’re able to then quickly provision that data into sandboxes to allow for more refined operation on specific subsets of that data, or use narrowly defined tools and integration approaches.

Whether or not we want to think abstractly about this big data craze as a mere concept or hype-bubble, the fact remains that the vendors on every conference panel throughout the day seemed to find some element of value in this topic. By presenting the opportunities and challenges of all the hardware and software this technology touches, attendees were left with the impression that the financial industry is in for some major retooling.


Related Articles

Big Data: A View from Wall Street

The Best Kept Secret in Big Analytics?

On Wall Street, The Race to Zero Continues

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This