Intelligent Application of SSDs to Accelerate HPC Workloads

By Nicole Hemsoth

October 1, 2012

Introduction

In most industries today, (whether it is financial services, manufacturing, academic research, healthcare and life sciences, or energy exploration) data analysis, modeling, and visualization efforts are critical to success.

To gain a competitive edge, most organizations are incorporating ever-large data sets and more variable data formats into these computational workflows to help derive better information upon which to make smarter decisions.

These big data applications are placing new attention on the high performance computing (HPC) solutions used to run the algorithms and process the raw data. Due to the larger volumes and greater variety of data types, as well as the desire to use more robust analysis, modeling, and visualization routines, HPC solutions can be used to provide high sustained I/O and throughput, while being optimized to cost-effectively handle highly variable workflows.

The essential element in all of this work is a need for speed. Organizations need fast time-to-results so that they can make the right decisions (which well to drill, which new drug candidate to develop, which product design to produce, which customer to award a lower rate loan to) before their competitors.

Complications and challenges that can impede HPC workflows

When looking to accelerate HPC workloads, there are several factors that can play a major role in overall performance.

To start, today’s analysis, modeling, and visualization efforts are carried out using much more sophisticated algorithms in order to derive more detailed and realistic results. The output from these routines offers finer spatial or temporal resolution and consequently results in much larger size output data sets. In a typical workflow, those output files might be used as input to another analysis, modeling, or visualization application.

These operations can impact HPC workflows since the great volumes of data produced by the initial run must be written to disk and saved and then the data must be ingested by yet another routine. Both operations can generate high I/O and throughput demands on an infrastructure. And if the infrastructure is not capable of sustaining these data transfers, the computational workflows can slow significantly.

Another factor has to do with the data that is being used in today’s analysis, modeling, and visualization efforts. Nearly every industry is now making use of much larger data sets, richer sets (such as that produced from newer seismic imaging tools or next-generation sequencers), and many more types of data. However, most users, even those who primarily have large data sets, also have large numbers of small files – even if they consume a relatively small percentage of the total capacity.

Big data and HPC solutions must therefore not only be capable of quickly accessing the large volumes of data required for the computations, they also must intelligently stage the different types of data, which comes in varying file formats and sizes, on suitably high performance storage.

Required storage solution characteristics

Organizations continually deploy new servers with more powerful CPUs to improve and speed up their analysis, modeling, and visualization efforts. To make the best use of such computing resources, an HPC solution must have a suitable storage solution to sustain HPC workflows.

A storage solution for today’s big data and HPC environments must be able to easily scale. Some solutions offer help meeting the growing data volume demands, but fall short when trying to keep CPUs satiated. To help accelerate HPC workflows, a storage solution must also scale in performance so that as the data volumes grow, the system supports the higher I/O and throughput required to get faster results.

Finally, a storage solution must be optimized to handle today’s HPC big data workflows consisting of data sets of files of all sizes. If all data used were in the same format – a structured database, for example – or of the same relative file size, a solution could be highly optimized to handle the specific data. Working with the mixed data sets used today requires a storage solution that optimizes workflow performance for each data type.

Panasas introduces an integrated SSD/SATA approach

Panasas ActiveStor storage systems have a modular blade architecture integrated with its PanFS parallel file system. The design eliminates the bottleneck of a single RAID controller to deliver high-performance, scalable storage. Prior generations of ActiveStor have been based solely on SATA drives and were well-tuned for high throughput.

With the fifth-generation ActiveStor 14, Panasas has taken a unique approach, leveraging lightning fast SSDs integrated with high capacity SATA disk to improve storage performance while keeping costs down. Rather than use SSD for caching or for “most recent” file access as many other vendors have done, ActiveStor 14 stores all metadata and small files (less than 60KB) on the SSDs and larger files on SATA drives.

Metadata is accessed frequently so fast metadata access benefits all types of workloads. All file operations, including reads and writes, require access to metadata. In many cases, such as directory listings, access to the metadata is all that is required to satisfy an I/O request. Storing metadata on SSD boosts performance for all storage operations, especially for directory functions (listing, searches, etc.) and RAID rebuilds in the event of a drive error. Rebuild performance has been improved so that the new 4TB drives can be rebuilt in the same amount of time as the 3TB drives in the prior generation ActiveStor 12, maintaining a high level of data integrity and system reliability.

Small file access can be disproportionately slow when read from, or written to, standard hard disk drives. Accesses of less than a full sector are inefficient, particularly for random I/O. Furthermore, reads and writes of small files can conflict with streaming reads or writes of large files to the same disk. By maintaining small files on SSD, such conflicts are eliminated. In addition, ActiveStor 14 stores the first 12KB of all files inside the file system metadata, improving SSD efficiency while increasing small file performance. This efficient storage of small files on SSD, dramatically improves response time and IOPS, as evidenced by very impressive SPEC sfs2008 NFS IOPS results that Panasas has published.

ActiveStor 14 is available in three configurations with varying sizes of SSD, SATA and cache. The amount of SSD for acceleration ranges from 1.5 percent up to 10.7 percent of total storage capacity. The bulk of the storage capacity, however, is on cost-effective SATA drives, keeping the overall cost per terabyte lower than the prior generation, and very competitive in the market today.

The Importance of Ease of Use and Management

Equally important to the performance and reliability of any storage system is the ease of use and management of the product. With ActiveStor, organizations can simply add blade enclosures to non-disruptively increase capacity and performance of the global file system as storage requirements grow. Parallel access to data and automated load balancing ensure that performance is optimized. This makes it easy to linearly scale capacity to over eight petabytes and performance to 150GB/s or 1.4M IOPS.

Conclusion

The end result is a high-performance storage system that delivers high throughput and IOPS, ideal for the most demanding HPC and big data workloads and accelerates time-to-results. ActiveStor delivers unmatched scale-out NAS performance in addition to the manageability, reliability, and value required by demanding computing organizations in the biosciences, energy, finance, government, manufacturing, media, and other research sectors.

To learn more about how the Panasas ActiveStor 14 can help your organization, register for the live webinar: http://www.panasas.com/news/webinars

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Researchers from Jülich Supercomputing Centre, Wuhan University, and the University of Groningen, reported last week they successfully simulated a quantum computer with 46 quantum bits (qubits) for the first time. The r Read more…

Researchers Advance User-Level Container Solution for HPC

December 18, 2017

Most scientific computing facilities, such us HPC or grid infrastructures, are shared among different research disciplines, and thus the system software environment needs to be generic enough to accommodate different use Read more…

By Isabel Campos & Jorge Gomes

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

Researchers Advance User-Level Container Solution for HPC

December 18, 2017

Most scientific computing facilities, such us HPC or grid infrastructures, are shared among different research disciplines, and thus the system software environ Read more…

By Isabel Campos & Jorge Gomes

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This