Intelligent Application of SSDs to Accelerate HPC Workloads

By Nicole Hemsoth

October 1, 2012

Introduction

In most industries today, (whether it is financial services, manufacturing, academic research, healthcare and life sciences, or energy exploration) data analysis, modeling, and visualization efforts are critical to success.

To gain a competitive edge, most organizations are incorporating ever-large data sets and more variable data formats into these computational workflows to help derive better information upon which to make smarter decisions.

These big data applications are placing new attention on the high performance computing (HPC) solutions used to run the algorithms and process the raw data. Due to the larger volumes and greater variety of data types, as well as the desire to use more robust analysis, modeling, and visualization routines, HPC solutions can be used to provide high sustained I/O and throughput, while being optimized to cost-effectively handle highly variable workflows.

The essential element in all of this work is a need for speed. Organizations need fast time-to-results so that they can make the right decisions (which well to drill, which new drug candidate to develop, which product design to produce, which customer to award a lower rate loan to) before their competitors.

Complications and challenges that can impede HPC workflows

When looking to accelerate HPC workloads, there are several factors that can play a major role in overall performance.

To start, today’s analysis, modeling, and visualization efforts are carried out using much more sophisticated algorithms in order to derive more detailed and realistic results. The output from these routines offers finer spatial or temporal resolution and consequently results in much larger size output data sets. In a typical workflow, those output files might be used as input to another analysis, modeling, or visualization application.

These operations can impact HPC workflows since the great volumes of data produced by the initial run must be written to disk and saved and then the data must be ingested by yet another routine. Both operations can generate high I/O and throughput demands on an infrastructure. And if the infrastructure is not capable of sustaining these data transfers, the computational workflows can slow significantly.

Another factor has to do with the data that is being used in today’s analysis, modeling, and visualization efforts. Nearly every industry is now making use of much larger data sets, richer sets (such as that produced from newer seismic imaging tools or next-generation sequencers), and many more types of data. However, most users, even those who primarily have large data sets, also have large numbers of small files – even if they consume a relatively small percentage of the total capacity.

Big data and HPC solutions must therefore not only be capable of quickly accessing the large volumes of data required for the computations, they also must intelligently stage the different types of data, which comes in varying file formats and sizes, on suitably high performance storage.

Required storage solution characteristics

Organizations continually deploy new servers with more powerful CPUs to improve and speed up their analysis, modeling, and visualization efforts. To make the best use of such computing resources, an HPC solution must have a suitable storage solution to sustain HPC workflows.

A storage solution for today’s big data and HPC environments must be able to easily scale. Some solutions offer help meeting the growing data volume demands, but fall short when trying to keep CPUs satiated. To help accelerate HPC workflows, a storage solution must also scale in performance so that as the data volumes grow, the system supports the higher I/O and throughput required to get faster results.

Finally, a storage solution must be optimized to handle today’s HPC big data workflows consisting of data sets of files of all sizes. If all data used were in the same format – a structured database, for example – or of the same relative file size, a solution could be highly optimized to handle the specific data. Working with the mixed data sets used today requires a storage solution that optimizes workflow performance for each data type.

Panasas introduces an integrated SSD/SATA approach

Panasas ActiveStor storage systems have a modular blade architecture integrated with its PanFS parallel file system. The design eliminates the bottleneck of a single RAID controller to deliver high-performance, scalable storage. Prior generations of ActiveStor have been based solely on SATA drives and were well-tuned for high throughput.

With the fifth-generation ActiveStor 14, Panasas has taken a unique approach, leveraging lightning fast SSDs integrated with high capacity SATA disk to improve storage performance while keeping costs down. Rather than use SSD for caching or for “most recent” file access as many other vendors have done, ActiveStor 14 stores all metadata and small files (less than 60KB) on the SSDs and larger files on SATA drives.

Metadata is accessed frequently so fast metadata access benefits all types of workloads. All file operations, including reads and writes, require access to metadata. In many cases, such as directory listings, access to the metadata is all that is required to satisfy an I/O request. Storing metadata on SSD boosts performance for all storage operations, especially for directory functions (listing, searches, etc.) and RAID rebuilds in the event of a drive error. Rebuild performance has been improved so that the new 4TB drives can be rebuilt in the same amount of time as the 3TB drives in the prior generation ActiveStor 12, maintaining a high level of data integrity and system reliability.

Small file access can be disproportionately slow when read from, or written to, standard hard disk drives. Accesses of less than a full sector are inefficient, particularly for random I/O. Furthermore, reads and writes of small files can conflict with streaming reads or writes of large files to the same disk. By maintaining small files on SSD, such conflicts are eliminated. In addition, ActiveStor 14 stores the first 12KB of all files inside the file system metadata, improving SSD efficiency while increasing small file performance. This efficient storage of small files on SSD, dramatically improves response time and IOPS, as evidenced by very impressive SPEC sfs2008 NFS IOPS results that Panasas has published.

ActiveStor 14 is available in three configurations with varying sizes of SSD, SATA and cache. The amount of SSD for acceleration ranges from 1.5 percent up to 10.7 percent of total storage capacity. The bulk of the storage capacity, however, is on cost-effective SATA drives, keeping the overall cost per terabyte lower than the prior generation, and very competitive in the market today.

The Importance of Ease of Use and Management

Equally important to the performance and reliability of any storage system is the ease of use and management of the product. With ActiveStor, organizations can simply add blade enclosures to non-disruptively increase capacity and performance of the global file system as storage requirements grow. Parallel access to data and automated load balancing ensure that performance is optimized. This makes it easy to linearly scale capacity to over eight petabytes and performance to 150GB/s or 1.4M IOPS.

Conclusion

The end result is a high-performance storage system that delivers high throughput and IOPS, ideal for the most demanding HPC and big data workloads and accelerates time-to-results. ActiveStor delivers unmatched scale-out NAS performance in addition to the manageability, reliability, and value required by demanding computing organizations in the biosciences, energy, finance, government, manufacturing, media, and other research sectors.

To learn more about how the Panasas ActiveStor 14 can help your organization, register for the live webinar: http://www.panasas.com/news/webinars

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

Update (Jan. 21): HPCwire has received confirmation from Atos that the system will have a peak speed of 537.6 teraflops, not 320 teraflops as had previously been reported. We plan to report additional details as we recei Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This