Intelligent Application of SSDs to Accelerate HPC Workloads

By Nicole Hemsoth

October 1, 2012


In most industries today, (whether it is financial services, manufacturing, academic research, healthcare and life sciences, or energy exploration) data analysis, modeling, and visualization efforts are critical to success.

To gain a competitive edge, most organizations are incorporating ever-large data sets and more variable data formats into these computational workflows to help derive better information upon which to make smarter decisions.

These big data applications are placing new attention on the high performance computing (HPC) solutions used to run the algorithms and process the raw data. Due to the larger volumes and greater variety of data types, as well as the desire to use more robust analysis, modeling, and visualization routines, HPC solutions can be used to provide high sustained I/O and throughput, while being optimized to cost-effectively handle highly variable workflows.

The essential element in all of this work is a need for speed. Organizations need fast time-to-results so that they can make the right decisions (which well to drill, which new drug candidate to develop, which product design to produce, which customer to award a lower rate loan to) before their competitors.

Complications and challenges that can impede HPC workflows

When looking to accelerate HPC workloads, there are several factors that can play a major role in overall performance.

To start, today’s analysis, modeling, and visualization efforts are carried out using much more sophisticated algorithms in order to derive more detailed and realistic results. The output from these routines offers finer spatial or temporal resolution and consequently results in much larger size output data sets. In a typical workflow, those output files might be used as input to another analysis, modeling, or visualization application.

These operations can impact HPC workflows since the great volumes of data produced by the initial run must be written to disk and saved and then the data must be ingested by yet another routine. Both operations can generate high I/O and throughput demands on an infrastructure. And if the infrastructure is not capable of sustaining these data transfers, the computational workflows can slow significantly.

Another factor has to do with the data that is being used in today’s analysis, modeling, and visualization efforts. Nearly every industry is now making use of much larger data sets, richer sets (such as that produced from newer seismic imaging tools or next-generation sequencers), and many more types of data. However, most users, even those who primarily have large data sets, also have large numbers of small files – even if they consume a relatively small percentage of the total capacity.

Big data and HPC solutions must therefore not only be capable of quickly accessing the large volumes of data required for the computations, they also must intelligently stage the different types of data, which comes in varying file formats and sizes, on suitably high performance storage.

Required storage solution characteristics

Organizations continually deploy new servers with more powerful CPUs to improve and speed up their analysis, modeling, and visualization efforts. To make the best use of such computing resources, an HPC solution must have a suitable storage solution to sustain HPC workflows.

A storage solution for today’s big data and HPC environments must be able to easily scale. Some solutions offer help meeting the growing data volume demands, but fall short when trying to keep CPUs satiated. To help accelerate HPC workflows, a storage solution must also scale in performance so that as the data volumes grow, the system supports the higher I/O and throughput required to get faster results.

Finally, a storage solution must be optimized to handle today’s HPC big data workflows consisting of data sets of files of all sizes. If all data used were in the same format – a structured database, for example – or of the same relative file size, a solution could be highly optimized to handle the specific data. Working with the mixed data sets used today requires a storage solution that optimizes workflow performance for each data type.

Panasas introduces an integrated SSD/SATA approach

Panasas ActiveStor storage systems have a modular blade architecture integrated with its PanFS parallel file system. The design eliminates the bottleneck of a single RAID controller to deliver high-performance, scalable storage. Prior generations of ActiveStor have been based solely on SATA drives and were well-tuned for high throughput.

With the fifth-generation ActiveStor 14, Panasas has taken a unique approach, leveraging lightning fast SSDs integrated with high capacity SATA disk to improve storage performance while keeping costs down. Rather than use SSD for caching or for “most recent” file access as many other vendors have done, ActiveStor 14 stores all metadata and small files (less than 60KB) on the SSDs and larger files on SATA drives.

Metadata is accessed frequently so fast metadata access benefits all types of workloads. All file operations, including reads and writes, require access to metadata. In many cases, such as directory listings, access to the metadata is all that is required to satisfy an I/O request. Storing metadata on SSD boosts performance for all storage operations, especially for directory functions (listing, searches, etc.) and RAID rebuilds in the event of a drive error. Rebuild performance has been improved so that the new 4TB drives can be rebuilt in the same amount of time as the 3TB drives in the prior generation ActiveStor 12, maintaining a high level of data integrity and system reliability.

Small file access can be disproportionately slow when read from, or written to, standard hard disk drives. Accesses of less than a full sector are inefficient, particularly for random I/O. Furthermore, reads and writes of small files can conflict with streaming reads or writes of large files to the same disk. By maintaining small files on SSD, such conflicts are eliminated. In addition, ActiveStor 14 stores the first 12KB of all files inside the file system metadata, improving SSD efficiency while increasing small file performance. This efficient storage of small files on SSD, dramatically improves response time and IOPS, as evidenced by very impressive SPEC sfs2008 NFS IOPS results that Panasas has published.

ActiveStor 14 is available in three configurations with varying sizes of SSD, SATA and cache. The amount of SSD for acceleration ranges from 1.5 percent up to 10.7 percent of total storage capacity. The bulk of the storage capacity, however, is on cost-effective SATA drives, keeping the overall cost per terabyte lower than the prior generation, and very competitive in the market today.

The Importance of Ease of Use and Management

Equally important to the performance and reliability of any storage system is the ease of use and management of the product. With ActiveStor, organizations can simply add blade enclosures to non-disruptively increase capacity and performance of the global file system as storage requirements grow. Parallel access to data and automated load balancing ensure that performance is optimized. This makes it easy to linearly scale capacity to over eight petabytes and performance to 150GB/s or 1.4M IOPS.


The end result is a high-performance storage system that delivers high throughput and IOPS, ideal for the most demanding HPC and big data workloads and accelerates time-to-results. ActiveStor delivers unmatched scale-out NAS performance in addition to the manageability, reliability, and value required by demanding computing organizations in the biosciences, energy, finance, government, manufacturing, media, and other research sectors.

To learn more about how the Panasas ActiveStor 14 can help your organization, register for the live webinar:


Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Launches Apollo 6500 Gen10 System as Part of AI Solution Push

March 21, 2018

HPE today announced the latest rev of its HPE Apollo 6500 platform, Gen10, along with a spate of new AI-oriented offerings designed to help customers optimize and scale up their AI and deep learning usage. Like is Gen Read more…

By Tiffany Trader

IBM Touts OpenPOWER Ecosystem, Announces New Customers, Products for AI and Hyperscale

March 20, 2018

At SC17 in Denver four months ago, Ken King, GM, OpenPOWER, IBM Systems Group, told a somewhat jaundiced trio of journalists that 2018 would, finally, after several years of expectations, be the year OpenPOWER and IBM’ Read more…

By Doug Black

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify e Read more…

By Rob Farber

HPE Extreme Performance Solutions

Harness the Full Power of HPC Servers with an Effective Cooling Approach

High performance computing (HPC) innovation is rapidly transforming the way we operate – with an onslaught of cutting-edge technologies designed to optimize applications and workloads, increase productivity, and enable better business outcomes. Read more…

IBM Unveils New Cloud for Data Science and Engineering

March 19, 2018

Days ahead of its inaugural IBM Think mega-event, the multinational tech mainstay on Friday (March 16) unveiled a new cloud offering called Cloud Private Data that’s designed to help organizations utilize data science Read more…

By Alex Woodie

HPE Launches Apollo 6500 Gen10 System as Part of AI Solution Push

March 21, 2018

HPE today announced the latest rev of its HPE Apollo 6500 platform, Gen10, along with a spate of new AI-oriented offerings designed to help customers optimize a Read more…

By Tiffany Trader

IBM Touts OpenPOWER Ecosystem, Announces New Customers, Products for AI and Hyperscale

March 20, 2018

At SC17 in Denver four months ago, Ken King, GM, OpenPOWER, IBM Systems Group, told a somewhat jaundiced trio of journalists that 2018 would, finally, after sev Read more…

By Doug Black

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This