ISC Cloud 2012 BOFs: Applications/Software, Reference Architectures and Data Transfer

By Nicole Hemsoth

October 2, 2012

At ISC Cloud 2012, talking points for the Birds of a Feather sessions were hand-picked by the participants. While the importance of security was a key theme throughout the two-day event, several other salient topics emerged during the voting process. The finalized BoF roster included “Applications and software in the cloud,” “HPC Cloud Reference Architectures” and “Data Transfer in/out of Clouds” to be held in parallel. Each group had about 10-15 participants discussing the challenges and implications of their chosen topic. After the conference, the panel moderators each submitted their notes on their findings.

BOF 1: Applications/Software in the Cloud

Moderator: David Wallom, Oxford eResearch Centre

The discussion was started with the consideration of how cloud computing could change the supply of application software with the possibility of ISV partnering with cloud providers to change the delivery model. This would allow application flexibility, but it was pointed out that there is an inherent unpredictability of a pay-as-you-go (PAYG) model. It may be an issue for those groups that have been previously subjected to a fairly stable cost model, though in many other areas PAYG is becoming more normal. A problem is that in current IaaS cloud models, costing is not simple and there may be resistance to the introduction of new business models from long-term users.

It was pointed out that it isn’t just the end-user applications but also all other components. An illustration of PAYG for areas other than end-user applications, which clearly shows one of the problems with other models is where LSF is an annual license, even though it may only be required a few times (less than 10).

With this change of model, how do we support the legacy application? This will depend on the type: Community applications that are open source will have to rely on their community and commercial applications will require their users to ‘gang up’ as it were. However, there are problems with a SaaS delivery mechanism since there could be resultant legacy version support required as many commercial customers want longevity. Over the longer term, cloud migration means users will have to be more used to version migration, and if so, application providers will have to make sure version migration is easier.

The level of cloud utilization will depend on the different application communities and different maturities of software. The possibility of flexibility is strongest where software is newest, i.e., application users do not favor one model over another. It is unlikely that cloud will affect the application design model to change MPI, and thus OpenMP will still need to be supported. On a longer term, the different types of interconnection software (MPI/OpenMP) won’t matter as the hardware will catch up with newer ideas.

We mustn’t forget that software isn’t just the application but also the networks that exist around it: Community-as-a-Service and Support-as-a-Service.

Of course, less data means that it is easier to move to the cloud, but if you can do more operations on your data in the cloud then this becomes less important, for example, only downloading the important result although this may require workflow in the cloud.

With the emergence of standard APIs for different components, the time is right for application designers to accept these changes in models by moving to the most advantageous cloud provider. We must ensure that application designers learn lessons from the previous instances where public cloud providers changed their models and made previous design decisions irrelevant or less than optimal.

  • It is a whole ecosystem. Remember that:

    • The user decides on the software that best solves their problem. End users don’t care, and they just want solutions.

    • Hardware licensing versus software licensing costs can be decisive.

    • Optimization for many different types of use cases can lead to different types of hardware solutions.

    • Cloud provider chooses hardware, software, interconnects, .i.e., the most efficient solution.

    • Community clouds targeted to different communities are not inevitable but likely as different ISV and communities get together to best optimize their requirements and solutions together.

    • Whatever use of cloud or otherwise we decide on has to fit with other parts of the business model/activity.

Cloud providers have the opportunities to get away from unnecessary user complications and also support their users with new models. There are good opportunities for long term relationships between ISV and cloud providers.

Finally the difference between the cloud and Application Service Provider (which we have had for around ten years) was discussed. It was brought to light that the quality/ubiquity of the network resources and the sheer number of resource types have changed.

BOF 2: Reference Architecture

Moderator: Josh Simons, VMware

Two basic models for moving HPC workloads into a cloud environment:

1. Virtual clusters formed by creating a persistent set of virtual machines on demand. Each virtual machine runs the same software stack (OS, libraries, batch scheduler, etc.) as was used in a bare-metal environment. This is desirable because from an end-user/scientist perspective, the interface to the compute interface remains the same: they use the same batch scheduler interfaces. The use of virtual machines is transparent to the end-user.

2. Virtual machines are created on demand to run each job and they persist only for the lifetime of the job. This allows each job to run with its own custom software stack, for individual jobs to be migrated dynamically across the virtual infrastructure for load-balancing, resiliency, or power management. This is not an evolutionary model in that the end-user would need to interact with either a new software layer that understands how to launch VMs rather than scheduling onto existing cluster nodes. This could be an entirely new layer or an augmented version of existing job schedulers.

It was noted that hybrids of the above two approaches could be used as well.

The following components were identified as being critical pieces of reference architecture for HPC in the cloud. (Not an exhaustive list.)

  • Self-service capabilities to enable end-users to create clusters on the fly.

  • A catalogue of virtual machines and software stacks that can be used to create these virtual clusters.

  • A provisioning engine to instantiate these virtual machines (it was noted that Open Stack work on “placement groups” is relevant).

  • An ability to elastically flex compute resources up and down as needs change.

  • A monitoring component to watch the health and performance of the infrastructure.

  • Billing and chargeback.

  • Data staging components – to move data in and out of the cloud.

  • Policy-based resource control mechanisms to mediate access to hardware resources between multiple cloud tenants.

  • Security – data security and protection and secure isolation of workloads in a multi-tenant environment.

It was noted that a “cloud” might not be virtualized, though virtualization was seen to make a number of the above functions easier to deliver.

It was posited that once HPC moves into the cloud, there will be a need to support complex applications that require cross-cloud workflows, similar to some of the meta-computing concepts developed within the grid computing realm. It was noted that if “cloud” is the follow-on to grid computing, then it would be useful to examine grid architectures closely, to determine which features should be brought forward into mainstream cloud architectures.

There are problems still to be solved if HPC is to move into the cloud. Some are technical – end-to-end automation of the use of HPC in the cloud. Others are business related: licensing, politics, and budgetary. The budgetary issue is particularly interesting: In the face of “unlimited” compute resources, how does an organization control access to limit its budgetary spend? This is particularly important for HPC workloads, which as we know can consume all available resources at a site. What happens when such users get access to unlimited resources in the cloud? Answering these questions will likely uncover additional required components for an HPC cloud reference architecture.

BOF 3: Data Transport

Moderator: Rolf Sperber, Alcatel-Lucent

Size Matters

There has to be a differentiation concerning the size of datasets to be transported in and out of the cloud. The target is optimized access – it can be achieved for small amount of data if there is a predictable way of accessing required data or moving data in or out of the cloud. For large datasets to be transported, the quality of service will have to be guaranteed for longer periods of time.

Small Data

To have instant access to data in a cloud, current metadata will not be sufficient. A software that has knowledge of the network infrastructure and defines a virtual network on demand is required. Multiple carrier and in consequence multiple vendor environments will have to be taken into account.

Big Data

This is about huge datasets to be transported over long distances. Final target is to have predictable transfer times for multiple datasets to be transported to a single location.

First Iteration

  • Federation of folders into a single folder with a metadata server to keep track of size, locality, etc.

  • Optimize transport by means of adequate transfer software. Here we are talking about software products (most of them commercial) that help solve the TCP problem

  • Optimize access by proactive distribution if possible. Here settled paradigms of work will have to be overcome.

Second Iteration

  • Optimize transport requirements with respect to site of computation.

  • Provide network control to enable clients to define an appropriate virtual network.

    • Multiple carriers with heterogeneous environments to be taken into account.

    • Charging models to be implemented.

Third iteration or Target

  • Further optimize applications to minimize transport requirements.

  • Integrate network control into applications.

    • Federation

    • Software defined networking taking care of both dedicated instance of time when transfer starts and duration of transfer in relation to size.

    • SDN calculating both routes and time of reservation.

    • SDN calculating total duration.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be natively integrated into four of the world's most advanced qu Read more…

Computing-Driven Medicine: Sleeping Better with HPC

September 10, 2024

As a senior undergraduate student at Fisk University in Nashville, Tenn., Ifrah Khurram's calculus professor, Dr. Sanjukta Hota, encouraged her to apply for the Sustainable Research Pathways Program (SRP). SRP was create Read more…

LLNL Engineers Harness Machine Learning to Unlock New Possibilities in Lattice Structures

September 9, 2024

Lattice structures, characterized by their complex patterns and hierarchical designs, offer immense potential across various industries, including automotive, aerospace, and biomedical engineering. With their outstand Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, integrated, and secured data. Now scientists working at univer Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently posted the following on X/Twitter: "This weekend, the @xA Read more…

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with performance benchmarks. In the first paper, Understanding Data Mov Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, in Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Shutterstock 1897494979

What’s New with Chapel? Nine Questions for the Development Team

September 4, 2024

HPC news headlines often highlight the latest hardware speeds and feeds. While advances on the hardware front are important, improving the ability to write soft Read more…

Critics Slam Government on Compute Speeds in Regulations

September 3, 2024

Critics are accusing the U.S. and state governments of overreaching by including limits on compute speeds in regulations and laws, which they claim will limit i Read more…

Shutterstock 1622080153

AWS Perfects Cloud Service for Supercomputing Customers

August 29, 2024

Amazon's AWS believes it has finally created a cloud service that will break through with HPC and supercomputing customers. The cloud provider a Read more…

HPC Debrief: James Walker CEO of NANO Nuclear Energy on Powering Datacenters

August 27, 2024

Welcome to The HPC Debrief where we interview industry leaders that are shaping the future of HPC. As the growth of AI continues, finding power for data centers Read more…

CEO Q&A: Acceleration is Quantinuum’s New Mantra for Success

August 27, 2024

At the Quantum World Congress (QWC) in mid-September, trapped ion quantum computing pioneer Quantinuum will unveil more about its expanding roadmap. Its current Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Leading Solution Providers

Contributors

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire