ISC Cloud 2012 BOFs: Applications/Software, Reference Architectures and Data Transfer

By Nicole Hemsoth

October 2, 2012

At ISC Cloud 2012, talking points for the Birds of a Feather sessions were hand-picked by the participants. While the importance of security was a key theme throughout the two-day event, several other salient topics emerged during the voting process. The finalized BoF roster included “Applications and software in the cloud,” “HPC Cloud Reference Architectures” and “Data Transfer in/out of Clouds” to be held in parallel. Each group had about 10-15 participants discussing the challenges and implications of their chosen topic. After the conference, the panel moderators each submitted their notes on their findings.

BOF 1: Applications/Software in the Cloud

Moderator: David Wallom, Oxford eResearch Centre

The discussion was started with the consideration of how cloud computing could change the supply of application software with the possibility of ISV partnering with cloud providers to change the delivery model. This would allow application flexibility, but it was pointed out that there is an inherent unpredictability of a pay-as-you-go (PAYG) model. It may be an issue for those groups that have been previously subjected to a fairly stable cost model, though in many other areas PAYG is becoming more normal. A problem is that in current IaaS cloud models, costing is not simple and there may be resistance to the introduction of new business models from long-term users.

It was pointed out that it isn’t just the end-user applications but also all other components. An illustration of PAYG for areas other than end-user applications, which clearly shows one of the problems with other models is where LSF is an annual license, even though it may only be required a few times (less than 10).

With this change of model, how do we support the legacy application? This will depend on the type: Community applications that are open source will have to rely on their community and commercial applications will require their users to ‘gang up’ as it were. However, there are problems with a SaaS delivery mechanism since there could be resultant legacy version support required as many commercial customers want longevity. Over the longer term, cloud migration means users will have to be more used to version migration, and if so, application providers will have to make sure version migration is easier.

The level of cloud utilization will depend on the different application communities and different maturities of software. The possibility of flexibility is strongest where software is newest, i.e., application users do not favor one model over another. It is unlikely that cloud will affect the application design model to change MPI, and thus OpenMP will still need to be supported. On a longer term, the different types of interconnection software (MPI/OpenMP) won’t matter as the hardware will catch up with newer ideas.

We mustn’t forget that software isn’t just the application but also the networks that exist around it: Community-as-a-Service and Support-as-a-Service.

Of course, less data means that it is easier to move to the cloud, but if you can do more operations on your data in the cloud then this becomes less important, for example, only downloading the important result although this may require workflow in the cloud.

With the emergence of standard APIs for different components, the time is right for application designers to accept these changes in models by moving to the most advantageous cloud provider. We must ensure that application designers learn lessons from the previous instances where public cloud providers changed their models and made previous design decisions irrelevant or less than optimal.

  • It is a whole ecosystem. Remember that:

    • The user decides on the software that best solves their problem. End users don’t care, and they just want solutions.

    • Hardware licensing versus software licensing costs can be decisive.

    • Optimization for many different types of use cases can lead to different types of hardware solutions.

    • Cloud provider chooses hardware, software, interconnects, .i.e., the most efficient solution.

    • Community clouds targeted to different communities are not inevitable but likely as different ISV and communities get together to best optimize their requirements and solutions together.

    • Whatever use of cloud or otherwise we decide on has to fit with other parts of the business model/activity.

Cloud providers have the opportunities to get away from unnecessary user complications and also support their users with new models. There are good opportunities for long term relationships between ISV and cloud providers.

Finally the difference between the cloud and Application Service Provider (which we have had for around ten years) was discussed. It was brought to light that the quality/ubiquity of the network resources and the sheer number of resource types have changed.

BOF 2: Reference Architecture

Moderator: Josh Simons, VMware

Two basic models for moving HPC workloads into a cloud environment:

1. Virtual clusters formed by creating a persistent set of virtual machines on demand. Each virtual machine runs the same software stack (OS, libraries, batch scheduler, etc.) as was used in a bare-metal environment. This is desirable because from an end-user/scientist perspective, the interface to the compute interface remains the same: they use the same batch scheduler interfaces. The use of virtual machines is transparent to the end-user.

2. Virtual machines are created on demand to run each job and they persist only for the lifetime of the job. This allows each job to run with its own custom software stack, for individual jobs to be migrated dynamically across the virtual infrastructure for load-balancing, resiliency, or power management. This is not an evolutionary model in that the end-user would need to interact with either a new software layer that understands how to launch VMs rather than scheduling onto existing cluster nodes. This could be an entirely new layer or an augmented version of existing job schedulers.

It was noted that hybrids of the above two approaches could be used as well.

The following components were identified as being critical pieces of reference architecture for HPC in the cloud. (Not an exhaustive list.)

  • Self-service capabilities to enable end-users to create clusters on the fly.

  • A catalogue of virtual machines and software stacks that can be used to create these virtual clusters.

  • A provisioning engine to instantiate these virtual machines (it was noted that Open Stack work on “placement groups” is relevant).

  • An ability to elastically flex compute resources up and down as needs change.

  • A monitoring component to watch the health and performance of the infrastructure.

  • Billing and chargeback.

  • Data staging components – to move data in and out of the cloud.

  • Policy-based resource control mechanisms to mediate access to hardware resources between multiple cloud tenants.

  • Security – data security and protection and secure isolation of workloads in a multi-tenant environment.

It was noted that a “cloud” might not be virtualized, though virtualization was seen to make a number of the above functions easier to deliver.

It was posited that once HPC moves into the cloud, there will be a need to support complex applications that require cross-cloud workflows, similar to some of the meta-computing concepts developed within the grid computing realm. It was noted that if “cloud” is the follow-on to grid computing, then it would be useful to examine grid architectures closely, to determine which features should be brought forward into mainstream cloud architectures.

There are problems still to be solved if HPC is to move into the cloud. Some are technical – end-to-end automation of the use of HPC in the cloud. Others are business related: licensing, politics, and budgetary. The budgetary issue is particularly interesting: In the face of “unlimited” compute resources, how does an organization control access to limit its budgetary spend? This is particularly important for HPC workloads, which as we know can consume all available resources at a site. What happens when such users get access to unlimited resources in the cloud? Answering these questions will likely uncover additional required components for an HPC cloud reference architecture.

BOF 3: Data Transport

Moderator: Rolf Sperber, Alcatel-Lucent

Size Matters

There has to be a differentiation concerning the size of datasets to be transported in and out of the cloud. The target is optimized access – it can be achieved for small amount of data if there is a predictable way of accessing required data or moving data in or out of the cloud. For large datasets to be transported, the quality of service will have to be guaranteed for longer periods of time.

Small Data

To have instant access to data in a cloud, current metadata will not be sufficient. A software that has knowledge of the network infrastructure and defines a virtual network on demand is required. Multiple carrier and in consequence multiple vendor environments will have to be taken into account.

Big Data

This is about huge datasets to be transported over long distances. Final target is to have predictable transfer times for multiple datasets to be transported to a single location.

First Iteration

  • Federation of folders into a single folder with a metadata server to keep track of size, locality, etc.

  • Optimize transport by means of adequate transfer software. Here we are talking about software products (most of them commercial) that help solve the TCP problem

  • Optimize access by proactive distribution if possible. Here settled paradigms of work will have to be overcome.

Second Iteration

  • Optimize transport requirements with respect to site of computation.

  • Provide network control to enable clients to define an appropriate virtual network.

    • Multiple carriers with heterogeneous environments to be taken into account.

    • Charging models to be implemented.

Third iteration or Target

  • Further optimize applications to minimize transport requirements.

  • Integrate network control into applications.

    • Federation

    • Software defined networking taking care of both dedicated instance of time when transfer starts and duration of transfer in relation to size.

    • SDN calculating both routes and time of reservation.

    • SDN calculating total duration.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This