ISC Cloud 2012 BOFs: Applications/Software, Reference Architectures and Data Transfer

By Nicole Hemsoth

October 2, 2012

At ISC Cloud 2012, talking points for the Birds of a Feather sessions were hand-picked by the participants. While the importance of security was a key theme throughout the two-day event, several other salient topics emerged during the voting process. The finalized BoF roster included “Applications and software in the cloud,” “HPC Cloud Reference Architectures” and “Data Transfer in/out of Clouds” to be held in parallel. Each group had about 10-15 participants discussing the challenges and implications of their chosen topic. After the conference, the panel moderators each submitted their notes on their findings.

BOF 1: Applications/Software in the Cloud

Moderator: David Wallom, Oxford eResearch Centre

The discussion was started with the consideration of how cloud computing could change the supply of application software with the possibility of ISV partnering with cloud providers to change the delivery model. This would allow application flexibility, but it was pointed out that there is an inherent unpredictability of a pay-as-you-go (PAYG) model. It may be an issue for those groups that have been previously subjected to a fairly stable cost model, though in many other areas PAYG is becoming more normal. A problem is that in current IaaS cloud models, costing is not simple and there may be resistance to the introduction of new business models from long-term users.

It was pointed out that it isn’t just the end-user applications but also all other components. An illustration of PAYG for areas other than end-user applications, which clearly shows one of the problems with other models is where LSF is an annual license, even though it may only be required a few times (less than 10).

With this change of model, how do we support the legacy application? This will depend on the type: Community applications that are open source will have to rely on their community and commercial applications will require their users to ‘gang up’ as it were. However, there are problems with a SaaS delivery mechanism since there could be resultant legacy version support required as many commercial customers want longevity. Over the longer term, cloud migration means users will have to be more used to version migration, and if so, application providers will have to make sure version migration is easier.

The level of cloud utilization will depend on the different application communities and different maturities of software. The possibility of flexibility is strongest where software is newest, i.e., application users do not favor one model over another. It is unlikely that cloud will affect the application design model to change MPI, and thus OpenMP will still need to be supported. On a longer term, the different types of interconnection software (MPI/OpenMP) won’t matter as the hardware will catch up with newer ideas.

We mustn’t forget that software isn’t just the application but also the networks that exist around it: Community-as-a-Service and Support-as-a-Service.

Of course, less data means that it is easier to move to the cloud, but if you can do more operations on your data in the cloud then this becomes less important, for example, only downloading the important result although this may require workflow in the cloud.

With the emergence of standard APIs for different components, the time is right for application designers to accept these changes in models by moving to the most advantageous cloud provider. We must ensure that application designers learn lessons from the previous instances where public cloud providers changed their models and made previous design decisions irrelevant or less than optimal.

  • It is a whole ecosystem. Remember that:

    • The user decides on the software that best solves their problem. End users don’t care, and they just want solutions.

    • Hardware licensing versus software licensing costs can be decisive.

    • Optimization for many different types of use cases can lead to different types of hardware solutions.

    • Cloud provider chooses hardware, software, interconnects, .i.e., the most efficient solution.

    • Community clouds targeted to different communities are not inevitable but likely as different ISV and communities get together to best optimize their requirements and solutions together.

    • Whatever use of cloud or otherwise we decide on has to fit with other parts of the business model/activity.

Cloud providers have the opportunities to get away from unnecessary user complications and also support their users with new models. There are good opportunities for long term relationships between ISV and cloud providers.

Finally the difference between the cloud and Application Service Provider (which we have had for around ten years) was discussed. It was brought to light that the quality/ubiquity of the network resources and the sheer number of resource types have changed.

BOF 2: Reference Architecture

Moderator: Josh Simons, VMware

Two basic models for moving HPC workloads into a cloud environment:

1. Virtual clusters formed by creating a persistent set of virtual machines on demand. Each virtual machine runs the same software stack (OS, libraries, batch scheduler, etc.) as was used in a bare-metal environment. This is desirable because from an end-user/scientist perspective, the interface to the compute interface remains the same: they use the same batch scheduler interfaces. The use of virtual machines is transparent to the end-user.

2. Virtual machines are created on demand to run each job and they persist only for the lifetime of the job. This allows each job to run with its own custom software stack, for individual jobs to be migrated dynamically across the virtual infrastructure for load-balancing, resiliency, or power management. This is not an evolutionary model in that the end-user would need to interact with either a new software layer that understands how to launch VMs rather than scheduling onto existing cluster nodes. This could be an entirely new layer or an augmented version of existing job schedulers.

It was noted that hybrids of the above two approaches could be used as well.

The following components were identified as being critical pieces of reference architecture for HPC in the cloud. (Not an exhaustive list.)

  • Self-service capabilities to enable end-users to create clusters on the fly.

  • A catalogue of virtual machines and software stacks that can be used to create these virtual clusters.

  • A provisioning engine to instantiate these virtual machines (it was noted that Open Stack work on “placement groups” is relevant).

  • An ability to elastically flex compute resources up and down as needs change.

  • A monitoring component to watch the health and performance of the infrastructure.

  • Billing and chargeback.

  • Data staging components – to move data in and out of the cloud.

  • Policy-based resource control mechanisms to mediate access to hardware resources between multiple cloud tenants.

  • Security – data security and protection and secure isolation of workloads in a multi-tenant environment.

It was noted that a “cloud” might not be virtualized, though virtualization was seen to make a number of the above functions easier to deliver.

It was posited that once HPC moves into the cloud, there will be a need to support complex applications that require cross-cloud workflows, similar to some of the meta-computing concepts developed within the grid computing realm. It was noted that if “cloud” is the follow-on to grid computing, then it would be useful to examine grid architectures closely, to determine which features should be brought forward into mainstream cloud architectures.

There are problems still to be solved if HPC is to move into the cloud. Some are technical – end-to-end automation of the use of HPC in the cloud. Others are business related: licensing, politics, and budgetary. The budgetary issue is particularly interesting: In the face of “unlimited” compute resources, how does an organization control access to limit its budgetary spend? This is particularly important for HPC workloads, which as we know can consume all available resources at a site. What happens when such users get access to unlimited resources in the cloud? Answering these questions will likely uncover additional required components for an HPC cloud reference architecture.

BOF 3: Data Transport

Moderator: Rolf Sperber, Alcatel-Lucent

Size Matters

There has to be a differentiation concerning the size of datasets to be transported in and out of the cloud. The target is optimized access – it can be achieved for small amount of data if there is a predictable way of accessing required data or moving data in or out of the cloud. For large datasets to be transported, the quality of service will have to be guaranteed for longer periods of time.

Small Data

To have instant access to data in a cloud, current metadata will not be sufficient. A software that has knowledge of the network infrastructure and defines a virtual network on demand is required. Multiple carrier and in consequence multiple vendor environments will have to be taken into account.

Big Data

This is about huge datasets to be transported over long distances. Final target is to have predictable transfer times for multiple datasets to be transported to a single location.

First Iteration

  • Federation of folders into a single folder with a metadata server to keep track of size, locality, etc.

  • Optimize transport by means of adequate transfer software. Here we are talking about software products (most of them commercial) that help solve the TCP problem

  • Optimize access by proactive distribution if possible. Here settled paradigms of work will have to be overcome.

Second Iteration

  • Optimize transport requirements with respect to site of computation.

  • Provide network control to enable clients to define an appropriate virtual network.

    • Multiple carriers with heterogeneous environments to be taken into account.

    • Charging models to be implemented.

Third iteration or Target

  • Further optimize applications to minimize transport requirements.

  • Integrate network control into applications.

    • Federation

    • Software defined networking taking care of both dedicated instance of time when transfer starts and duration of transfer in relation to size.

    • SDN calculating both routes and time of reservation.

    • SDN calculating total duration.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This