Using In-Memory Computing to Simplify Big Data Analytics

By Nicole Hemsoth

October 2, 2012

by Dr. William Bain, ScaleOut Software, Inc.

Introduction

The “big data” revolution is upon us, fed by the need in both the public and private sectors to quickly analyze large datasets for important patterns and trends. With big data analysis, ecommerce vendors can target customers more precisely, financial analysts can quickly spot changing market conditions, manufacturers can tune logistics planning, and the list goes on. They all need powerful, easy to use analysis tools to maintain a competitive edge.

Parallel computing techniques, such as “map/reduce,” have opened the door to dramatically reducing analysis times and are now proliferating in platforms such as open source Hadoop. However, the history of parallel computing since the mid-1980s has demonstrated that the complexity of these techniques can be daunting, impeding adoption and inhibiting widespread use. How can this complexity be managed so that the benefits of parallel data analysis are fully realized?

The technology of in-memory data grids (IMDGs) offers important breakthroughs in addressing the challenge. Having proven their value in storing fast-changing application data and scaling application performance, IMDGs have integrated map/reduce analytics into the grid to provide parallel analysis and enable near real-time decision making. By incorporating straightforward, well understood programming techniques with a fast execution engine, IMDGs lower the learning curve, shorten the development cycle, and reduce analysis times. This article explains how IMDGs reduce complexity and lower the barrier to big data analysis.

The Starting Point: Object-Based Data Storage and Query

IMDGs store fast-changing data within a middleware software tier shared across a pool of application servers. This enables applications to seamlessly scale access to fast-changing data as servers are added to handle growing workloads. To maximize scalability, IMDGs automatically load-balance data across servers on which the grid is hosted. They also redundantly store data on multiple servers to ensure high availability in case a server or network link fails. Additional capabilities, including eventing and distributed locking, make IMDGs a powerful data storage platform.

The key to the IMDG’s ease of use is its integration into the object-oriented data model used by business logic, typically written in Java or C#. IMDGs store data as a collection of logically related objects which are accessible either by specifying an identifying key or by querying object properties. For example, an ecommerce Web site can store a collection of shopping cart objects identified by user IDs and queryable based on properties such as dollar value or time of last change. A financial application analyzing trading strategies can store a large collection of stock histories, one for each stock symbol being analyzed and containing the price history of the stock; each object can be queried by properties such as sector, market cap, or other criteria. The following diagram illustrates the use of parallel query for selecting stock history data based on region and industry sector:

 ScaleOut Parallel Query

Storing data as object-based collections offers the IMDG several advantages. First, it provides a straightforward means for identifying data to be analyzed. In contrast, applications running on file-based analysis platforms such as Hadoop must read and parse files to generate key/value pairs for analysis; this adds complexity to the application. The IMDG’s object-oriented storage and query mechanism eliminates the need for applications to implement this code and can quickly scan a large data set for objects whose properties match a query specification. Moreover, it also enables the IMDG to load-balance the objects in memory across a pool of grid servers. This eliminates the overhead of file I/O otherwise required to input data for analysis, significantly speeding up processing.

The Next Step: Object-Based Data Analysis

Because IMDGs store and query data as a collection of logically related objects, applications can easily create analysis code using methods defined for the object’s type. This simplifies the application by taking full advantage of the language’s typing system to identify code to be executed during parallel analysis. The developer typically defines two methods, an “analyze” method that analyzes all queried objects and a “merge” method that combines the results generated by the analyze methods. Developing these methods requires no special knowledge of parallel programming because they are written exactly as if they were to be sequentially executed on an object collection hosted on a single workstation.

The IMDG can fully leverage this object-oriented view of data by automatically deploying these “analyze” and “merge” methods on the grid servers for execution. For example, ScaleOut Analytics Server™ from ScaleOut Software lets developers pre-stage these methods and any supporting libraries on the grid prior to starting the parallel analysis.

As illustrated in the following diagram, the analysis proceeds in three steps on each grid server in parallel:

  • The grid server’s query engine identifies locally stored objects for analysis based on selected properties of interest from the query. These objects are held in memory on the grid servers.
  • The grid server feeds the locally selected objects to a local multi-core execution engine for analysis using the pre-staged analyze method. Execution automatically uses all processors and cores for maximum performance. (Data never moves between servers.)
  • The execution engine combines all analysis results by running the user’s merge method, again taking full advantage of multi-core speedup. It stores the merged result with the server’s in-memory object store.

Scaleout Merged Results

To ensure maximum performance, all grid servers automatically perform the above analysis in parallel. This leaves merged results in each grid server’s memory-based store. How can these results be efficiently combined to create a final result?

The Final Step: Efficient, Object-Based Merging of Results

A great deal of complexity in parallel data analysis can be found in the merging of results from the analysis phase. While the map/reduce programming pattern offers powerful semantics, its inherent complexity adds to development time and requires careful tuning. Many useful analyses can be performed using a subset of this pattern which combines results in a pairwise manner following a well understood technique from parallel computing called “global data aggregation.” This avoids the need for applications to define key/value spaces for results and implement reduction algorithms to process them. For example, when analyzing stock trading strategies, the set of results generated by analyzing all queried stock symbols can be combined pairwise to generate a final result; simultaneous access to all results, while allowed in fully general data reduction, is not required for merging results here.

IMDGs can take advantage of this straightforward merging technique to simplify application development and automatically merge results across grid servers. Once the application defines a merge method for combining two results from the analysis phase, the IMDG stores all result objects as a collection within the grid and merges them into a final result to be delivered back to the user. As described above, the IMDG’s parallel execution engine combines all results generated within a single grid server. It then automatically combines results across all grid servers using a distributed combining tree, as shown in the following diagram:

 ScaleOut Combining Tree

To ensure the fastest possible merging of results, some IMDGs, such as ScaleOut Analytics Server, use a binary merge tree that asynchronously combines results as they are generated by the grid servers. This minimizes the overall time to merge results across the grid servers, ensuring excellent scalability. More important, this approach avoids the need for application developers to write additional code and tune performance.  It also delivers the final result to the user in memory instead of requiring that a set of results be retrieved from the file system.

Pulling It All Together: Big Data Simplified – and Faster

As we have seen, IMDGs can take the complexity out of parallel data analysis by hosting memory-based data as object collections and performing a simplified form of map/reduce analysis using familiar object-oriented techniques. The application developer selects data for analysis by querying properties of interest and then writes an “analyze” method to independently analyze each selected object along with a “merge” method to combine the results in a pairwise manner. The IMDG takes care of the rest, including automatically shipping the code to the grid servers, querying and analyzing the objects in parallel, and combining the results.

The following diagram illustrates a map/reduce analysis of stock trading strategies across a set of stock histories held in the IMDG. A parallel query selects stocks for analysis, and the IMDG analyzes the stocks and merges the results using the supplied methods:

 Scaleout Merged Results

This simplified approach to map/reduce eliminates the complexity of popular map/reduce platforms which require the developer to define key/value spaces and implement record readers and reducers. It also eliminates the need to deploy and tune a complex parallel computing infrastructure.

However, this simplicity does not imply lower performance. For datasets that fit in memory, IMDGs offer substantial performance gains over file-based map/reduce platforms. By avoiding file I/O and data motion to combine results and feed reducers, they eliminate substantial overhead and boost throughput. To measure the effect of these optimizations, performance measurements were made for the stock trading analysis described above using ScaleOut Analytics Server as the number of stock histories and grid servers was proportionally increased. As the graph below illustrates, the IMDG delivered linearly scalable throughput (shown as the red line in the graph). An alternative implementation of this application was measured using Hadoop’s map/reduce environment. Hadoop provided linear scaling with about 16X lower throughput (shown as the blue line in the graph) due to significant overhead introduced by file I/O, combining, reducing, and batch scheduling.

 ScaleOut Throughput Comparison

To see the impact of file I/O, data was staged in the IMDG instead of the Hadoop file system (HDFS). Hadoop’s throughput was increased by about 6X (shown as the green line). The remaining difference is largely due to file I/O between the map and reduce phases. Although Hadoop is working to reduce this additional file I/O, significant data motion and lower performance due to the use of multiple reducers is unavoidable.

Many Datasets are Memory-Based

The complexity and overhead of today’s disk-based map/reduce platforms can be too high for applications which must quickly analyze fast-changing data sets measured in hundreds of gigabytes or terabytes. (Estimates by some analysts indicate that as much as sixty percent of data sets are smaller than ten terabytes.) In many situations, an answer in hours or minutes is not acceptable.  For example, an e-commerce Web site may need to monitor online shopping carts to see which products are selling; a financial services company might need to hone its equity trading strategy as it optimizes its response to fast-changing market conditions; an airline may need to continuously analyze its reservations system for delayed flights or lost bags.

Many useful datasets fit into an IMDG’s scalable memory storage and can benefit from the simple, object-based analysis techniques and fast analysis times offered by the IMDG’s integration of data storage with an object-oriented parallel analysis engine. IMDGs open up the opportunity to analyze fast-changing data with near real-time performance, giving businesses important new tools for maximizing competitiveness.

In Summary

With the ever increasing explosion in data for analysis and the need for fast insights on emerging trends, IMDGs offer a highly attractive platform for hosting map/reduce analysis. By simplifying the development model and automating execution, IMDGs shorten the learning curve in developing analysis codes and eliminate the tuning steps required by more complex platforms. Because IMDGs run the analysis on data already staged in memory and load-balanced across grid servers, file I/O is eliminated and data motion is minimized. IMDGs also provide the infrastructure needed to automatically run analysis code on all grid servers in parallel and then combine the results with minimum latency. The net result is that by using an IMDG, application developers can easily analyze fast-changing, memory-based data and discover data patterns and trends that are vital to a company’s success.

Dr. William L. Bain is founder and CEO of ScaleOut Software, Inc. Bill has a Ph.D. in electrical engineering/parallel computing from Rice University, and he has worked at Bell Labs research, Intel, and Microsoft. Bill founded and ran three start-up companies prior to joining Microsoft. In the most recent company (Valence Research), he developed a distributed Web load-balancing software solution that was acquired by Microsoft and is now called Network Load Balanc­ing within the Windows Server operating system. Dr. Bain holds several patents in computer architecture and distributed computing. As a member of the Seattle-based Alliance of Angels, Dr. Bain is actively involved in entrepreneurship and the angel community.

www.scaleoutsoftware.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This