NSF-NCSA Study Probes Relationship between Industrial Applications and Underlying Science

By Steve Conway

October 3, 2012

NSF and NCSA recently commissioned a study to see whether improvements in the science inside applications and other factors could help industrial HPC users. Merle Giles, director of NCSA’s Private Sector Program, discusses the findings with HPCwire.

HPCwire: What was the goal of the study?

Merle Giles: The main goal was to better understand the root causes that limit the realism and performance of today’s HPC applications and to solicit ideas for improving the applications’ performance and realism for industrial users.

HPCwire: Why is HPC use in industry important to NCSA and NSF?

Giles: Engineering and scientific research problems have a lot in common. They can be equally complex and are based on the same underlying science, so advances in science can often be leveraged across both domains for greater benefit to society. Industrial engineering has a special value because it can function as a living laboratory for applying new science and getting feedback under the tight time constraints of the product design window.

HPCwire: How are NSF and NCSA involved in helping industrial HPC users?

Giles: NSF and NCSA are heavily involved in supporting engineering as well as science. NSF’s XSEDE program stands for Extreme Science and Engineering Discovery Environment. It’s a five-year, $121 million initiative to support scientific and industrial researchers across the world with, quote, “the most advanced, powerful, and robust collection of integrated advanced digital resources and services in the world.”

NCSA is the lead institution in this partnership, which involves more than a dozen major universities plus other organizations. In addition, NCSA formed the Private Sector Program that I’m in charge of, so we could make our HPC resources and the best research minds at the University of Illinois available to industry.

HPCwire: What prompted the new study?

Giles: Industrial users were telling us they needed better simulation-based science and engineering. They said the performance of some of their key applications in HPC environments was stuck and they needed better solutions so they could develop higher-quality, more competitive products in shorter timeframes. Industry has a time scale for innovation that the academic world often doesn’t. We need both ends of this time scale.

Scientific researchers may need years or decades to advance the frontiers of knowledge in their fields. The industrial community, on the other hand, is driven by more immediate competitive pressures to build higher-quality products sooner. So, this study was prompted by industry’s urgent need to know what is limiting the performance and realism of their simulations and what can be done to address the limitations.

HPCwire: Can you give me an example of an industrial user facing limitations?

Giles: Sure. One auto company said they’ve been pushing up against the limits of single-domain CFD and now need multi-domain simulations. We felt we owed it to users like this to document what’s limiting the realism. We’ve learned a lot in this process.

Collaboration with academia will be crucial for advancing the applications. In many cases, the academics know how to do this but industry doesn’t necessarily. There’s a clear need for academia and industry to work together to address these limitations, and that will help both camps because academic scientists and industrial scientists have many of the same issues.

HPCwire: Who conducted the new study and what methodology did they use?

Giles: We hired IDC to carry it out. They conducted extensive interviews in person and in writing. They also organized a focus group to probe some of the issues more deeply.

HPCwire: For those that aren’t getting the HPC performance they need today, did the study show how are they dealing with this inadequacy?

Giles: Yes. 30 percent of the organizations named specific ways in which they now have to dumb down their problems to complete the runs in reasonable amounts of time. The most popular strategies are using coarser meshes, employing fewer elements, not fully exploiting the known science, and employing fewer time steps or reducing the length of the investigated timeframe.

Industry uses HPC to test to a spec, but they don’t have enough time to test to see where the point of failure is. They dumb the problem down to validate the spec. But without testing to failure, they can’t see how much a product may be over-engineered. Over-engineering can cost a lot of money and reduce product efficiency and competitiveness. Advances in the HPC simulations could let them test to failure within the design window.

HPCwire: Who was interviewed?

Giles: We started earlier on with NCSA partners and IDC expanded from that base. Of the surveyed organizations, 17 percent were in government, 7 percent were academic, and the large majority of 76 percent came from industry or from organizations closely allied with industry.

The organizations ranged from a small business with 22 employees to one with 164,000 people. Revenue ranged from $240 million to $129 billion, and profits varied from $15 million to $5 billion. R&D investments ranged from $515 million to $5 billion. On average, the responding companies invested about 6.5 times more in R&D, as a percentage of their revenue, than all U.S. companies did as a group.

HPCwire: What do you think were the most important findings?

Giles: It haunts me that only about one in six organizations said that their applications as now written would meet their requirements for the next five years. As I said earlier, 30 percent said they have to dumb down their problems today. Another important finding is that users are okay with today’s HPC systems but many need retraining for next-generation systems. It will take more hands-on training and education to move industry forward.

HPCwire: What was the most surprising finding?

Giles: The similarity of responses regardless of company size. There’s a mistaken impression that the small and medium-sized companies have fewer challenges. The study confirmed that companies of all sizes need to reduce uncertainty. This is often due to the limitations of the science embedded into the applications today. To increase their confidence levels, they need more HPC capacity and capability.

HPCwire: You asked the surveyed organizations what they could do with unlimited computing power applicable to their problems. What did they say?

Giles: Some organizations provided very specific examples. An aerospace company said they could simulate the complete turbine assembly of a jet engine or optimize an entire new engine design. A life sciences firm would be able to predict the function of an ensemble of living things in a sample of soil based entirely on the DNA sequences found in that soil sample. That’s called metagenomics. A manufacturer said they could gain knowledge faster and sooner in the product development cycle, and ultimately be able to design by analysis and validate the designs prior to first build and use first build to further validate the simulation model.

HPCwire: Did they give you a wish list of high-priority things they needed?

Giles: Yes. We asked about improvements that could be accomplished in one to two years. Most of these near-term improvements fell into a few categories. These included higher-resolution meshes, improved mathematical models and algorithms, improvements to the underlying physics, and better methods for data integration and analysis.

Another frequent desire is to be able to do multi-disciplinary, multi-scale simulations. Large-scale data integration is related to this challenge and is also on the wish list. In fact, multi-disciplinary, multi-scale simulations would be helped by every other item on the wish list.

HPCwire: If they got the items on their wish list, what difference could it make?

Giles: The wish list is needed to exploit the science we already know today. A large majority of the respondents believe that today’s known science could support a moderate or a large amount of additional realism in the applications. More than a third of the respondents said that taking the next step, advancing the known science, could add even more realism to their key applications.

HPCwire: Could NSF and NCSA play a role in advancing applications capabilities for industrial organizations? Would industry want to work with you on this?

Giles: About two-thirds of the organizations said yes to having NCSA and/or NSF heavily involved in the process of advancing their important applications. The respondents were saying that we have really good tools out there and today’s science is good, but NCSA and NSF can help the user community to exploit the tools better and to advance the science and the models underlying the applications.

This confirms what we’ve been hearing separately from this study. Companies are looking for expert organizations like NSF and NCSA to play a more consultative role in helping them to use advanced science and engineering tools. More than one-third of Fortune 50 companies have chosen to work with NCSA’s Private Sector Program.

HPCwire: Is this study publicly available?

Giles: It will be publicly available in a few months.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This