NSF-NCSA Study Probes Relationship between Industrial Applications and Underlying Science

By Steve Conway

October 3, 2012

NSF and NCSA recently commissioned a study to see whether improvements in the science inside applications and other factors could help industrial HPC users. Merle Giles, director of NCSA’s Private Sector Program, discusses the findings with HPCwire.

HPCwire: What was the goal of the study?

Merle Giles: The main goal was to better understand the root causes that limit the realism and performance of today’s HPC applications and to solicit ideas for improving the applications’ performance and realism for industrial users.

HPCwire: Why is HPC use in industry important to NCSA and NSF?

Giles: Engineering and scientific research problems have a lot in common. They can be equally complex and are based on the same underlying science, so advances in science can often be leveraged across both domains for greater benefit to society. Industrial engineering has a special value because it can function as a living laboratory for applying new science and getting feedback under the tight time constraints of the product design window.

HPCwire: How are NSF and NCSA involved in helping industrial HPC users?

Giles: NSF and NCSA are heavily involved in supporting engineering as well as science. NSF’s XSEDE program stands for Extreme Science and Engineering Discovery Environment. It’s a five-year, $121 million initiative to support scientific and industrial researchers across the world with, quote, “the most advanced, powerful, and robust collection of integrated advanced digital resources and services in the world.”

NCSA is the lead institution in this partnership, which involves more than a dozen major universities plus other organizations. In addition, NCSA formed the Private Sector Program that I’m in charge of, so we could make our HPC resources and the best research minds at the University of Illinois available to industry.

HPCwire: What prompted the new study?

Giles: Industrial users were telling us they needed better simulation-based science and engineering. They said the performance of some of their key applications in HPC environments was stuck and they needed better solutions so they could develop higher-quality, more competitive products in shorter timeframes. Industry has a time scale for innovation that the academic world often doesn’t. We need both ends of this time scale.

Scientific researchers may need years or decades to advance the frontiers of knowledge in their fields. The industrial community, on the other hand, is driven by more immediate competitive pressures to build higher-quality products sooner. So, this study was prompted by industry’s urgent need to know what is limiting the performance and realism of their simulations and what can be done to address the limitations.

HPCwire: Can you give me an example of an industrial user facing limitations?

Giles: Sure. One auto company said they’ve been pushing up against the limits of single-domain CFD and now need multi-domain simulations. We felt we owed it to users like this to document what’s limiting the realism. We’ve learned a lot in this process.

Collaboration with academia will be crucial for advancing the applications. In many cases, the academics know how to do this but industry doesn’t necessarily. There’s a clear need for academia and industry to work together to address these limitations, and that will help both camps because academic scientists and industrial scientists have many of the same issues.

HPCwire: Who conducted the new study and what methodology did they use?

Giles: We hired IDC to carry it out. They conducted extensive interviews in person and in writing. They also organized a focus group to probe some of the issues more deeply.

HPCwire: For those that aren’t getting the HPC performance they need today, did the study show how are they dealing with this inadequacy?

Giles: Yes. 30 percent of the organizations named specific ways in which they now have to dumb down their problems to complete the runs in reasonable amounts of time. The most popular strategies are using coarser meshes, employing fewer elements, not fully exploiting the known science, and employing fewer time steps or reducing the length of the investigated timeframe.

Industry uses HPC to test to a spec, but they don’t have enough time to test to see where the point of failure is. They dumb the problem down to validate the spec. But without testing to failure, they can’t see how much a product may be over-engineered. Over-engineering can cost a lot of money and reduce product efficiency and competitiveness. Advances in the HPC simulations could let them test to failure within the design window.

HPCwire: Who was interviewed?

Giles: We started earlier on with NCSA partners and IDC expanded from that base. Of the surveyed organizations, 17 percent were in government, 7 percent were academic, and the large majority of 76 percent came from industry or from organizations closely allied with industry.

The organizations ranged from a small business with 22 employees to one with 164,000 people. Revenue ranged from $240 million to $129 billion, and profits varied from $15 million to $5 billion. R&D investments ranged from $515 million to $5 billion. On average, the responding companies invested about 6.5 times more in R&D, as a percentage of their revenue, than all U.S. companies did as a group.

HPCwire: What do you think were the most important findings?

Giles: It haunts me that only about one in six organizations said that their applications as now written would meet their requirements for the next five years. As I said earlier, 30 percent said they have to dumb down their problems today. Another important finding is that users are okay with today’s HPC systems but many need retraining for next-generation systems. It will take more hands-on training and education to move industry forward.

HPCwire: What was the most surprising finding?

Giles: The similarity of responses regardless of company size. There’s a mistaken impression that the small and medium-sized companies have fewer challenges. The study confirmed that companies of all sizes need to reduce uncertainty. This is often due to the limitations of the science embedded into the applications today. To increase their confidence levels, they need more HPC capacity and capability.

HPCwire: You asked the surveyed organizations what they could do with unlimited computing power applicable to their problems. What did they say?

Giles: Some organizations provided very specific examples. An aerospace company said they could simulate the complete turbine assembly of a jet engine or optimize an entire new engine design. A life sciences firm would be able to predict the function of an ensemble of living things in a sample of soil based entirely on the DNA sequences found in that soil sample. That’s called metagenomics. A manufacturer said they could gain knowledge faster and sooner in the product development cycle, and ultimately be able to design by analysis and validate the designs prior to first build and use first build to further validate the simulation model.

HPCwire: Did they give you a wish list of high-priority things they needed?

Giles: Yes. We asked about improvements that could be accomplished in one to two years. Most of these near-term improvements fell into a few categories. These included higher-resolution meshes, improved mathematical models and algorithms, improvements to the underlying physics, and better methods for data integration and analysis.

Another frequent desire is to be able to do multi-disciplinary, multi-scale simulations. Large-scale data integration is related to this challenge and is also on the wish list. In fact, multi-disciplinary, multi-scale simulations would be helped by every other item on the wish list.

HPCwire: If they got the items on their wish list, what difference could it make?

Giles: The wish list is needed to exploit the science we already know today. A large majority of the respondents believe that today’s known science could support a moderate or a large amount of additional realism in the applications. More than a third of the respondents said that taking the next step, advancing the known science, could add even more realism to their key applications.

HPCwire: Could NSF and NCSA play a role in advancing applications capabilities for industrial organizations? Would industry want to work with you on this?

Giles: About two-thirds of the organizations said yes to having NCSA and/or NSF heavily involved in the process of advancing their important applications. The respondents were saying that we have really good tools out there and today’s science is good, but NCSA and NSF can help the user community to exploit the tools better and to advance the science and the models underlying the applications.

This confirms what we’ve been hearing separately from this study. Companies are looking for expert organizations like NSF and NCSA to play a more consultative role in helping them to use advanced science and engineering tools. More than one-third of Fortune 50 companies have chosen to work with NCSA’s Private Sector Program.

HPCwire: Is this study publicly available?

Giles: It will be publicly available in a few months.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This