NSF-NCSA Study Probes Relationship between Industrial Applications and Underlying Science

By Steve Conway

October 3, 2012

NSF and NCSA recently commissioned a study to see whether improvements in the science inside applications and other factors could help industrial HPC users. Merle Giles, director of NCSA’s Private Sector Program, discusses the findings with HPCwire.

HPCwire: What was the goal of the study?

Merle Giles: The main goal was to better understand the root causes that limit the realism and performance of today’s HPC applications and to solicit ideas for improving the applications’ performance and realism for industrial users.

HPCwire: Why is HPC use in industry important to NCSA and NSF?

Giles: Engineering and scientific research problems have a lot in common. They can be equally complex and are based on the same underlying science, so advances in science can often be leveraged across both domains for greater benefit to society. Industrial engineering has a special value because it can function as a living laboratory for applying new science and getting feedback under the tight time constraints of the product design window.

HPCwire: How are NSF and NCSA involved in helping industrial HPC users?

Giles: NSF and NCSA are heavily involved in supporting engineering as well as science. NSF’s XSEDE program stands for Extreme Science and Engineering Discovery Environment. It’s a five-year, $121 million initiative to support scientific and industrial researchers across the world with, quote, “the most advanced, powerful, and robust collection of integrated advanced digital resources and services in the world.”

NCSA is the lead institution in this partnership, which involves more than a dozen major universities plus other organizations. In addition, NCSA formed the Private Sector Program that I’m in charge of, so we could make our HPC resources and the best research minds at the University of Illinois available to industry.

HPCwire: What prompted the new study?

Giles: Industrial users were telling us they needed better simulation-based science and engineering. They said the performance of some of their key applications in HPC environments was stuck and they needed better solutions so they could develop higher-quality, more competitive products in shorter timeframes. Industry has a time scale for innovation that the academic world often doesn’t. We need both ends of this time scale.

Scientific researchers may need years or decades to advance the frontiers of knowledge in their fields. The industrial community, on the other hand, is driven by more immediate competitive pressures to build higher-quality products sooner. So, this study was prompted by industry’s urgent need to know what is limiting the performance and realism of their simulations and what can be done to address the limitations.

HPCwire: Can you give me an example of an industrial user facing limitations?

Giles: Sure. One auto company said they’ve been pushing up against the limits of single-domain CFD and now need multi-domain simulations. We felt we owed it to users like this to document what’s limiting the realism. We’ve learned a lot in this process.

Collaboration with academia will be crucial for advancing the applications. In many cases, the academics know how to do this but industry doesn’t necessarily. There’s a clear need for academia and industry to work together to address these limitations, and that will help both camps because academic scientists and industrial scientists have many of the same issues.

HPCwire: Who conducted the new study and what methodology did they use?

Giles: We hired IDC to carry it out. They conducted extensive interviews in person and in writing. They also organized a focus group to probe some of the issues more deeply.

HPCwire: For those that aren’t getting the HPC performance they need today, did the study show how are they dealing with this inadequacy?

Giles: Yes. 30 percent of the organizations named specific ways in which they now have to dumb down their problems to complete the runs in reasonable amounts of time. The most popular strategies are using coarser meshes, employing fewer elements, not fully exploiting the known science, and employing fewer time steps or reducing the length of the investigated timeframe.

Industry uses HPC to test to a spec, but they don’t have enough time to test to see where the point of failure is. They dumb the problem down to validate the spec. But without testing to failure, they can’t see how much a product may be over-engineered. Over-engineering can cost a lot of money and reduce product efficiency and competitiveness. Advances in the HPC simulations could let them test to failure within the design window.

HPCwire: Who was interviewed?

Giles: We started earlier on with NCSA partners and IDC expanded from that base. Of the surveyed organizations, 17 percent were in government, 7 percent were academic, and the large majority of 76 percent came from industry or from organizations closely allied with industry.

The organizations ranged from a small business with 22 employees to one with 164,000 people. Revenue ranged from $240 million to $129 billion, and profits varied from $15 million to $5 billion. R&D investments ranged from $515 million to $5 billion. On average, the responding companies invested about 6.5 times more in R&D, as a percentage of their revenue, than all U.S. companies did as a group.

HPCwire: What do you think were the most important findings?

Giles: It haunts me that only about one in six organizations said that their applications as now written would meet their requirements for the next five years. As I said earlier, 30 percent said they have to dumb down their problems today. Another important finding is that users are okay with today’s HPC systems but many need retraining for next-generation systems. It will take more hands-on training and education to move industry forward.

HPCwire: What was the most surprising finding?

Giles: The similarity of responses regardless of company size. There’s a mistaken impression that the small and medium-sized companies have fewer challenges. The study confirmed that companies of all sizes need to reduce uncertainty. This is often due to the limitations of the science embedded into the applications today. To increase their confidence levels, they need more HPC capacity and capability.

HPCwire: You asked the surveyed organizations what they could do with unlimited computing power applicable to their problems. What did they say?

Giles: Some organizations provided very specific examples. An aerospace company said they could simulate the complete turbine assembly of a jet engine or optimize an entire new engine design. A life sciences firm would be able to predict the function of an ensemble of living things in a sample of soil based entirely on the DNA sequences found in that soil sample. That’s called metagenomics. A manufacturer said they could gain knowledge faster and sooner in the product development cycle, and ultimately be able to design by analysis and validate the designs prior to first build and use first build to further validate the simulation model.

HPCwire: Did they give you a wish list of high-priority things they needed?

Giles: Yes. We asked about improvements that could be accomplished in one to two years. Most of these near-term improvements fell into a few categories. These included higher-resolution meshes, improved mathematical models and algorithms, improvements to the underlying physics, and better methods for data integration and analysis.

Another frequent desire is to be able to do multi-disciplinary, multi-scale simulations. Large-scale data integration is related to this challenge and is also on the wish list. In fact, multi-disciplinary, multi-scale simulations would be helped by every other item on the wish list.

HPCwire: If they got the items on their wish list, what difference could it make?

Giles: The wish list is needed to exploit the science we already know today. A large majority of the respondents believe that today’s known science could support a moderate or a large amount of additional realism in the applications. More than a third of the respondents said that taking the next step, advancing the known science, could add even more realism to their key applications.

HPCwire: Could NSF and NCSA play a role in advancing applications capabilities for industrial organizations? Would industry want to work with you on this?

Giles: About two-thirds of the organizations said yes to having NCSA and/or NSF heavily involved in the process of advancing their important applications. The respondents were saying that we have really good tools out there and today’s science is good, but NCSA and NSF can help the user community to exploit the tools better and to advance the science and the models underlying the applications.

This confirms what we’ve been hearing separately from this study. Companies are looking for expert organizations like NSF and NCSA to play a more consultative role in helping them to use advanced science and engineering tools. More than one-third of Fortune 50 companies have chosen to work with NCSA’s Private Sector Program.

HPCwire: Is this study publicly available?

Giles: It will be publicly available in a few months.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

Intel, Micron to Go Their Separate 3D NAND Ways

January 10, 2018

The announcement on Monday (Jan. 8) that Intel and Micron have decided to “update” – that is, end – their long-term joint development partnership for 3D NAND technology is nearly as interesting an exercise in pub Read more…

By Doug Black

HPE Extreme Performance Solutions

The Living Heart Project Wins Three Prestigious Awards for HPC Simulation

Imagine creating a treatment plan for a patient on the other side of the world, or testing a drug without ever putting subjects at risk. Read more…

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect application performance by 10-30 percent. The patch makes any call fro Read more…

By Rosemary Francis

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Independent Hyperion Research Will Chart its Own Course

December 19, 2017

Hyperion Research, formerly the HPC research and consulting practice within IDC, has become an independent company with Earl Joseph, the long-time leader of the Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This