NSF-NCSA Study Probes Relationship between Industrial Applications and Underlying Science

By Steve Conway

October 3, 2012

NSF and NCSA recently commissioned a study to see whether improvements in the science inside applications and other factors could help industrial HPC users. Merle Giles, director of NCSA’s Private Sector Program, discusses the findings with HPCwire.

HPCwire: What was the goal of the study?

Merle Giles: The main goal was to better understand the root causes that limit the realism and performance of today’s HPC applications and to solicit ideas for improving the applications’ performance and realism for industrial users.

HPCwire: Why is HPC use in industry important to NCSA and NSF?

Giles: Engineering and scientific research problems have a lot in common. They can be equally complex and are based on the same underlying science, so advances in science can often be leveraged across both domains for greater benefit to society. Industrial engineering has a special value because it can function as a living laboratory for applying new science and getting feedback under the tight time constraints of the product design window.

HPCwire: How are NSF and NCSA involved in helping industrial HPC users?

Giles: NSF and NCSA are heavily involved in supporting engineering as well as science. NSF’s XSEDE program stands for Extreme Science and Engineering Discovery Environment. It’s a five-year, $121 million initiative to support scientific and industrial researchers across the world with, quote, “the most advanced, powerful, and robust collection of integrated advanced digital resources and services in the world.”

NCSA is the lead institution in this partnership, which involves more than a dozen major universities plus other organizations. In addition, NCSA formed the Private Sector Program that I’m in charge of, so we could make our HPC resources and the best research minds at the University of Illinois available to industry.

HPCwire: What prompted the new study?

Giles: Industrial users were telling us they needed better simulation-based science and engineering. They said the performance of some of their key applications in HPC environments was stuck and they needed better solutions so they could develop higher-quality, more competitive products in shorter timeframes. Industry has a time scale for innovation that the academic world often doesn’t. We need both ends of this time scale.

Scientific researchers may need years or decades to advance the frontiers of knowledge in their fields. The industrial community, on the other hand, is driven by more immediate competitive pressures to build higher-quality products sooner. So, this study was prompted by industry’s urgent need to know what is limiting the performance and realism of their simulations and what can be done to address the limitations.

HPCwire: Can you give me an example of an industrial user facing limitations?

Giles: Sure. One auto company said they’ve been pushing up against the limits of single-domain CFD and now need multi-domain simulations. We felt we owed it to users like this to document what’s limiting the realism. We’ve learned a lot in this process.

Collaboration with academia will be crucial for advancing the applications. In many cases, the academics know how to do this but industry doesn’t necessarily. There’s a clear need for academia and industry to work together to address these limitations, and that will help both camps because academic scientists and industrial scientists have many of the same issues.

HPCwire: Who conducted the new study and what methodology did they use?

Giles: We hired IDC to carry it out. They conducted extensive interviews in person and in writing. They also organized a focus group to probe some of the issues more deeply.

HPCwire: For those that aren’t getting the HPC performance they need today, did the study show how are they dealing with this inadequacy?

Giles: Yes. 30 percent of the organizations named specific ways in which they now have to dumb down their problems to complete the runs in reasonable amounts of time. The most popular strategies are using coarser meshes, employing fewer elements, not fully exploiting the known science, and employing fewer time steps or reducing the length of the investigated timeframe.

Industry uses HPC to test to a spec, but they don’t have enough time to test to see where the point of failure is. They dumb the problem down to validate the spec. But without testing to failure, they can’t see how much a product may be over-engineered. Over-engineering can cost a lot of money and reduce product efficiency and competitiveness. Advances in the HPC simulations could let them test to failure within the design window.

HPCwire: Who was interviewed?

Giles: We started earlier on with NCSA partners and IDC expanded from that base. Of the surveyed organizations, 17 percent were in government, 7 percent were academic, and the large majority of 76 percent came from industry or from organizations closely allied with industry.

The organizations ranged from a small business with 22 employees to one with 164,000 people. Revenue ranged from $240 million to $129 billion, and profits varied from $15 million to $5 billion. R&D investments ranged from $515 million to $5 billion. On average, the responding companies invested about 6.5 times more in R&D, as a percentage of their revenue, than all U.S. companies did as a group.

HPCwire: What do you think were the most important findings?

Giles: It haunts me that only about one in six organizations said that their applications as now written would meet their requirements for the next five years. As I said earlier, 30 percent said they have to dumb down their problems today. Another important finding is that users are okay with today’s HPC systems but many need retraining for next-generation systems. It will take more hands-on training and education to move industry forward.

HPCwire: What was the most surprising finding?

Giles: The similarity of responses regardless of company size. There’s a mistaken impression that the small and medium-sized companies have fewer challenges. The study confirmed that companies of all sizes need to reduce uncertainty. This is often due to the limitations of the science embedded into the applications today. To increase their confidence levels, they need more HPC capacity and capability.

HPCwire: You asked the surveyed organizations what they could do with unlimited computing power applicable to their problems. What did they say?

Giles: Some organizations provided very specific examples. An aerospace company said they could simulate the complete turbine assembly of a jet engine or optimize an entire new engine design. A life sciences firm would be able to predict the function of an ensemble of living things in a sample of soil based entirely on the DNA sequences found in that soil sample. That’s called metagenomics. A manufacturer said they could gain knowledge faster and sooner in the product development cycle, and ultimately be able to design by analysis and validate the designs prior to first build and use first build to further validate the simulation model.

HPCwire: Did they give you a wish list of high-priority things they needed?

Giles: Yes. We asked about improvements that could be accomplished in one to two years. Most of these near-term improvements fell into a few categories. These included higher-resolution meshes, improved mathematical models and algorithms, improvements to the underlying physics, and better methods for data integration and analysis.

Another frequent desire is to be able to do multi-disciplinary, multi-scale simulations. Large-scale data integration is related to this challenge and is also on the wish list. In fact, multi-disciplinary, multi-scale simulations would be helped by every other item on the wish list.

HPCwire: If they got the items on their wish list, what difference could it make?

Giles: The wish list is needed to exploit the science we already know today. A large majority of the respondents believe that today’s known science could support a moderate or a large amount of additional realism in the applications. More than a third of the respondents said that taking the next step, advancing the known science, could add even more realism to their key applications.

HPCwire: Could NSF and NCSA play a role in advancing applications capabilities for industrial organizations? Would industry want to work with you on this?

Giles: About two-thirds of the organizations said yes to having NCSA and/or NSF heavily involved in the process of advancing their important applications. The respondents were saying that we have really good tools out there and today’s science is good, but NCSA and NSF can help the user community to exploit the tools better and to advance the science and the models underlying the applications.

This confirms what we’ve been hearing separately from this study. Companies are looking for expert organizations like NSF and NCSA to play a more consultative role in helping them to use advanced science and engineering tools. More than one-third of Fortune 50 companies have chosen to work with NCSA’s Private Sector Program.

HPCwire: Is this study publicly available?

Giles: It will be publicly available in a few months.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This