NSF-NCSA Study Probes Relationship between Industrial Applications and Underlying Science

By Steve Conway

October 3, 2012

NSF and NCSA recently commissioned a study to see whether improvements in the science inside applications and other factors could help industrial HPC users. Merle Giles, director of NCSA’s Private Sector Program, discusses the findings with HPCwire.

HPCwire: What was the goal of the study?

Merle Giles: The main goal was to better understand the root causes that limit the realism and performance of today’s HPC applications and to solicit ideas for improving the applications’ performance and realism for industrial users.

HPCwire: Why is HPC use in industry important to NCSA and NSF?

Giles: Engineering and scientific research problems have a lot in common. They can be equally complex and are based on the same underlying science, so advances in science can often be leveraged across both domains for greater benefit to society. Industrial engineering has a special value because it can function as a living laboratory for applying new science and getting feedback under the tight time constraints of the product design window.

HPCwire: How are NSF and NCSA involved in helping industrial HPC users?

Giles: NSF and NCSA are heavily involved in supporting engineering as well as science. NSF’s XSEDE program stands for Extreme Science and Engineering Discovery Environment. It’s a five-year, $121 million initiative to support scientific and industrial researchers across the world with, quote, “the most advanced, powerful, and robust collection of integrated advanced digital resources and services in the world.”

NCSA is the lead institution in this partnership, which involves more than a dozen major universities plus other organizations. In addition, NCSA formed the Private Sector Program that I’m in charge of, so we could make our HPC resources and the best research minds at the University of Illinois available to industry.

HPCwire: What prompted the new study?

Giles: Industrial users were telling us they needed better simulation-based science and engineering. They said the performance of some of their key applications in HPC environments was stuck and they needed better solutions so they could develop higher-quality, more competitive products in shorter timeframes. Industry has a time scale for innovation that the academic world often doesn’t. We need both ends of this time scale.

Scientific researchers may need years or decades to advance the frontiers of knowledge in their fields. The industrial community, on the other hand, is driven by more immediate competitive pressures to build higher-quality products sooner. So, this study was prompted by industry’s urgent need to know what is limiting the performance and realism of their simulations and what can be done to address the limitations.

HPCwire: Can you give me an example of an industrial user facing limitations?

Giles: Sure. One auto company said they’ve been pushing up against the limits of single-domain CFD and now need multi-domain simulations. We felt we owed it to users like this to document what’s limiting the realism. We’ve learned a lot in this process.

Collaboration with academia will be crucial for advancing the applications. In many cases, the academics know how to do this but industry doesn’t necessarily. There’s a clear need for academia and industry to work together to address these limitations, and that will help both camps because academic scientists and industrial scientists have many of the same issues.

HPCwire: Who conducted the new study and what methodology did they use?

Giles: We hired IDC to carry it out. They conducted extensive interviews in person and in writing. They also organized a focus group to probe some of the issues more deeply.

HPCwire: For those that aren’t getting the HPC performance they need today, did the study show how are they dealing with this inadequacy?

Giles: Yes. 30 percent of the organizations named specific ways in which they now have to dumb down their problems to complete the runs in reasonable amounts of time. The most popular strategies are using coarser meshes, employing fewer elements, not fully exploiting the known science, and employing fewer time steps or reducing the length of the investigated timeframe.

Industry uses HPC to test to a spec, but they don’t have enough time to test to see where the point of failure is. They dumb the problem down to validate the spec. But without testing to failure, they can’t see how much a product may be over-engineered. Over-engineering can cost a lot of money and reduce product efficiency and competitiveness. Advances in the HPC simulations could let them test to failure within the design window.

HPCwire: Who was interviewed?

Giles: We started earlier on with NCSA partners and IDC expanded from that base. Of the surveyed organizations, 17 percent were in government, 7 percent were academic, and the large majority of 76 percent came from industry or from organizations closely allied with industry.

The organizations ranged from a small business with 22 employees to one with 164,000 people. Revenue ranged from $240 million to $129 billion, and profits varied from $15 million to $5 billion. R&D investments ranged from $515 million to $5 billion. On average, the responding companies invested about 6.5 times more in R&D, as a percentage of their revenue, than all U.S. companies did as a group.

HPCwire: What do you think were the most important findings?

Giles: It haunts me that only about one in six organizations said that their applications as now written would meet their requirements for the next five years. As I said earlier, 30 percent said they have to dumb down their problems today. Another important finding is that users are okay with today’s HPC systems but many need retraining for next-generation systems. It will take more hands-on training and education to move industry forward.

HPCwire: What was the most surprising finding?

Giles: The similarity of responses regardless of company size. There’s a mistaken impression that the small and medium-sized companies have fewer challenges. The study confirmed that companies of all sizes need to reduce uncertainty. This is often due to the limitations of the science embedded into the applications today. To increase their confidence levels, they need more HPC capacity and capability.

HPCwire: You asked the surveyed organizations what they could do with unlimited computing power applicable to their problems. What did they say?

Giles: Some organizations provided very specific examples. An aerospace company said they could simulate the complete turbine assembly of a jet engine or optimize an entire new engine design. A life sciences firm would be able to predict the function of an ensemble of living things in a sample of soil based entirely on the DNA sequences found in that soil sample. That’s called metagenomics. A manufacturer said they could gain knowledge faster and sooner in the product development cycle, and ultimately be able to design by analysis and validate the designs prior to first build and use first build to further validate the simulation model.

HPCwire: Did they give you a wish list of high-priority things they needed?

Giles: Yes. We asked about improvements that could be accomplished in one to two years. Most of these near-term improvements fell into a few categories. These included higher-resolution meshes, improved mathematical models and algorithms, improvements to the underlying physics, and better methods for data integration and analysis.

Another frequent desire is to be able to do multi-disciplinary, multi-scale simulations. Large-scale data integration is related to this challenge and is also on the wish list. In fact, multi-disciplinary, multi-scale simulations would be helped by every other item on the wish list.

HPCwire: If they got the items on their wish list, what difference could it make?

Giles: The wish list is needed to exploit the science we already know today. A large majority of the respondents believe that today’s known science could support a moderate or a large amount of additional realism in the applications. More than a third of the respondents said that taking the next step, advancing the known science, could add even more realism to their key applications.

HPCwire: Could NSF and NCSA play a role in advancing applications capabilities for industrial organizations? Would industry want to work with you on this?

Giles: About two-thirds of the organizations said yes to having NCSA and/or NSF heavily involved in the process of advancing their important applications. The respondents were saying that we have really good tools out there and today’s science is good, but NCSA and NSF can help the user community to exploit the tools better and to advance the science and the models underlying the applications.

This confirms what we’ve been hearing separately from this study. Companies are looking for expert organizations like NSF and NCSA to play a more consultative role in helping them to use advanced science and engineering tools. More than one-third of Fortune 50 companies have chosen to work with NCSA’s Private Sector Program.

HPCwire: Is this study publicly available?

Giles: It will be publicly available in a few months.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about one of the great inspirational stories of these competitions. Read more…

By Dan Olds

NSF Launches Quantum Computing Faculty Fellows Program

October 22, 2018

Efforts to expand quantum computing research capacity continue to accelerate. The National Science Foundation today announced a Quantum Computing & Information Science Faculty Fellows (QCIS-FF) program aimed at devel Read more…

By John Russell

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Join IBM at SC18 and Learn to Harness the Next Generation of AI-focused Supercomputing

Blurring the lines between HPC and AI

Today’s high performance computers are helping clients gain insights at an unprecedented pace. The intersection of artificial intelligence (AI) and HPC can transform industries while solving some of the world’s toughest challenges. Read more…

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about o Read more…

By Dan Olds

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This