Ahead by a Century: Utility Supercomputing Advances Stem Cell Research

By Tiffany Trader

October 8, 2012

The use of the term “computer” to mean “calculating machine” dates back to 1897, according to The Oxford English Dictionary, Second Edition. One-hundred and fifteen years later, we’re on the verge of not only exascale calculating machines, but a new era in health care: personalized medicine. This emerging field in which health care decisions and practices are customized to the individual patient using genetic information rests on decades of scientific achievement. And just as advances in digital technology continue to bring HPC into the mainstream, advances in computer science and genomics are democratizing medical care.

Cycle Computing - Victor Ruotti slide imageOne of the key enablers behind both of these trends is cloud computing, a way of delivering computing that relies on economies of scale. Making supercomputing accessible to a new class of user is the purview of utility supercomputing vendor Cycle Computing. In the weeks running up to SC11, Cycle CEO Jason Stowe introduced the Big Science Challenge to demonstrate the capabilities of on-demand supercomputing. What if researchers could have access to virtually unlimited resources, Stowe asked, what kinds of big science questions could they answer?

While the big labs and well-funded researchers from academia and industry very often have access to the largest clusters, there are countless smaller researchers who are relegated to relying on much smaller machines, multicore workstations if they’re lucky, or even generic desktop systems if they’re not. These types of users probably can’t afford a million dollar supercomputer, but what if they could rent such a system, even for a few hours? That is exactly the kind of proposition that Cycle Computing is offering.

In April, Cycle announced the creation of a 50,000 core mega-cluster on behalf of computational chemistry outfit Schrödinger. What would have cost $20-30 million to build from scratch was provisioned using the Amazon EC2 system for $4,828.85 per hour, and Schrödinger researchers were able to analyze 21 million drug compounds in just 3 hours.

Just last week another compelling HPC cloud use case came out of the Cycle-Amazon camp involving Victor Ruotti, a computational biologist with the Morgridge Institute for Research and winner of Cycle’s Big Science Challenge. In March, Ruotti was selected as the recipient of a $10,000 award from Cycle Computing. (Amazon initially promised an additional $2,500, but later upped its share to $9,500.) What appealed to the BigScience Challenge judges including CEO Stowe was the innovative aspect of the work and the potential to benefit humanity with potential disease treatments.

Ruotti is using the computational time to create a knowledgebase indexing system for stem cells and their derivatives. In this era of next-generation sequencing and personalized medicine, stem cell-based therapies will be vital in combating a multitude of diseases, but the pertinent information first needs to be organized into an accessible format – and this is precisely what Ruotti is working toward. When we spoke with Ruotti last week, he was still transferring the results of the run and preparing to build the database.


Ruotti’s Run – Basic Metrics

Using spot instances and some creative thinking, Cycle engineers were able to transform the monetary award into nearly 115 compute years, enabling 11,955 pairs of samples to be processed in one week. The total run cost $19,555, which works out to $0.0175 per core-hour or $116/hr. The project used 5,000 cores on average, 8,000 cores at peak, and accessed 78TB of storage in the Amazon cloud. Cycle noted an equivalent cluster comprised of 400 servers would cost nearly $2,000,000 to purchase outright – 100 times more than the AWS approach, not including the cost of storage.

To arrive at the number of compute years, take the total number of compute hours (1,003,404) and divide by the hours in one compute year (8,760 hours), which comes out to 114.54 years. In earth years, this would mean starting the calculation on a single-core server in 1897 in order to finish in 2012. 1897 just so happens to be the year that the term computer, as an electric-computation device, was first used.

“If you look at it that way, we could have started this calculation on a single-core server back in 1897,” remarked Stowe, “ran it through the entirety of the 20-century, from jazz of the roaring 20s, through the depression to the space race and the cold war and disco in the 80s and grudge and techno, all the way to Gangnam style, and finishing this year.”


Ruotti’s Run – Additional Information

>> NEXT: Spot Instances Save Money

Everyone on the project wanted to get the most out of the award dollars so the Cycle engineers considered the problem carefully. By employing Amazon’s spot pricing, the budget stretched to accommodate 114.5 years of computation, whereas the same money put toward on-demand instances would have generated just nine years of compute. The spot instance approach extracted nearly 13 times more computing from the award spend; however, there was a catch, as Ian Alderman, Cycle’s senior software engineer, explained: “If we bid, say, 15 cents, and the market for the server is 14 cents, we pay 14 cents, but if the market crosses 15 cents and goes up to 16 cents, then we lose the server and the job is interrupted.”

So the engineers needed to optimize the workflow to run on spots, while not allowing the interruptions to impact the workloads. This necessitated breaking the job into small components and being able to restart workloads as close to where they left off as possible. To provision the large number of instances, the team used schedulers, such as GridEngine, HTCondor, and Torque, and configured the cluster with Opscode Chef.

Compared to the 50,000 core use case, this job was about efficiency, said Stowe. Making the most of the compute-hours and supporting interruptions were key goals. Another aspect that was different was that instead of dealing with molecular data, this project processed genomic data. At its peak, the current project used 78 TB of data, bumping it into big data territory.

When I asked Stowe if it was fair to draw conclusions about utility supercomputing based on embarrassingly parallel workloads, he noted that more and more science workloads that were once rigid in their parallelism are now “pleasantly-parallel,” especially when it comes to the analysis phase. This enables researchers to achieve scale without the need for expensive high-speed interconnects and allows more options in how you run the computation (public cloud, private cloud, hybrid model, etc.). There’s a shift going on and genomics is a prime example, said Stowe. The massive amount of data coming off of instruments is inherently data-parallel and well-suited for high-throughput use cases.

Ruotti, for his part, was eager to cover the merits of the project, and noted how the Amazon-Cycle run generated enough data to build a useful resource that will in turn support future genomics work.

He explained how he and his colleagues at Morgridge Institute have established a large collection of genetic samples, including human embryonic cells and cells that are in the process of differentiating into other cell types. Out of about 800 samples that they’ve accumulated, they selected 124 samples for this project. Normally they would analyze the samples one by one depending on the needs of a given project, but the basis for this project is to run the comparison in an n-squared algorithm. Doing analysis on these 124×124 sample pairs, then gathering and recording information on which pairs are closer and farther apart.

The goal is to eventually build an inventory of every cell type they have in the lab. To begin with, this will allow them to cluster all the samples, but Ruotti notes an equally important benefit. The differentiating process is not linear, meaning that there are a lot of pathways a given cell can go into. The more information they have on the probabilities and ramifications of the different types of cell divergence, the more control they will be able to exert on the process of turning embryonic cells into desired cell types. So far they have developed some good protocols for transforming the embryonic cells into neural cells, hepatic cells and muscle cells, but there are still a lot of unanswered questions regarding the process.

Right now, the group at Morgridge is focused on building a useful resource with the data that they have, and the hope is that as they get more samples, they will be able to keep adding to the inventory in a streamlined way. And while Ruotti characterized the current stage as proof-of-concept, that did not get in the way of his enthusiasm or forward-thinking aspirations. He noted that there are other repositories of raw data such as the SCOR database, and perhaps these could be added to the inventory as well. He is confident that as more and more labs will start doing large genomics runs, they too will need a resource for querying samples.

As exciting as these first steps are, they open up the door to even more ground-breaking science and discovery, Ruotti remarked. “The field of next-generation sequencing is growing at an exponential rate,” he added, “We’re only going to get more data as the companies push the boundary on longer reads and more samples per run.”

The indexing system will provide a way for scientists to obtain information on the most current genes being looked at for their potential for treatments and cures. There are some resources out there currently, Ruotti noted, but they are not up-to-date as far as the latest next-generation sequencing and in terms of RNA, so his group hopes that the new system will provide the best way for scientists to query for their favorite genes.

As for in-house resources, the Morgridge Institute currently has a sequencer from Illumina, a 40-core Sun Grid Engine cluster. While considered a large cluster several years ago, it’s now one of their smaller resources. Although it’s generally sufficient for extracting information from one experiment, the process takes a few hours, and when there are multiple samples, this cluster becomes a bottleneck, Ruotti said. Public cloud resources, like the Cycle/Amazon solution, are also on their radar. The Morgridge Institute is in talks with the Condor Project to discuss ways to supplement their current resources with public cloud.

On the subject of using owned and rented computing resources in a complementary way, Stowe discussed some IP they’ve developed called Cement-Once. This is basically a cloud-bursting mechanism that takes advantage of as much internal capacity as possible, and when needed will provision additional resources externally.

“We definitely think there are large portions of our customer base that have internal HPC and potentially want to be able to run large compute both internally and externally when it’s appropriate, so we’ve done a considerable amount of work in enabling that area,” Stowe remarked. “We see that across multiple portions of our customer base. Internal environments are too small when you need them the most and too large every other time. Cloud has the potential to balance these imbalances.”

With the final bits from the 2011 contest still streaming in, Cycle Computing is keeping the momentum going with the announcement of a second annual BigScience Challenge. Interested applicants are asked to complete an entry explaining who they are and what big question they want to answer. Any and all researchers are invited to apply, but the focus for the contest is on big data and big compute problems and their big benefits to humanity.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This