Ahead by a Century: Utility Supercomputing Advances Stem Cell Research

By Tiffany Trader

October 8, 2012

The use of the term “computer” to mean “calculating machine” dates back to 1897, according to The Oxford English Dictionary, Second Edition. One-hundred and fifteen years later, we’re on the verge of not only exascale calculating machines, but a new era in health care: personalized medicine. This emerging field in which health care decisions and practices are customized to the individual patient using genetic information rests on decades of scientific achievement. And just as advances in digital technology continue to bring HPC into the mainstream, advances in computer science and genomics are democratizing medical care.

Cycle Computing - Victor Ruotti slide imageOne of the key enablers behind both of these trends is cloud computing, a way of delivering computing that relies on economies of scale. Making supercomputing accessible to a new class of user is the purview of utility supercomputing vendor Cycle Computing. In the weeks running up to SC11, Cycle CEO Jason Stowe introduced the Big Science Challenge to demonstrate the capabilities of on-demand supercomputing. What if researchers could have access to virtually unlimited resources, Stowe asked, what kinds of big science questions could they answer?

While the big labs and well-funded researchers from academia and industry very often have access to the largest clusters, there are countless smaller researchers who are relegated to relying on much smaller machines, multicore workstations if they’re lucky, or even generic desktop systems if they’re not. These types of users probably can’t afford a million dollar supercomputer, but what if they could rent such a system, even for a few hours? That is exactly the kind of proposition that Cycle Computing is offering.

In April, Cycle announced the creation of a 50,000 core mega-cluster on behalf of computational chemistry outfit Schrödinger. What would have cost $20-30 million to build from scratch was provisioned using the Amazon EC2 system for $4,828.85 per hour, and Schrödinger researchers were able to analyze 21 million drug compounds in just 3 hours.

Just last week another compelling HPC cloud use case came out of the Cycle-Amazon camp involving Victor Ruotti, a computational biologist with the Morgridge Institute for Research and winner of Cycle’s Big Science Challenge. In March, Ruotti was selected as the recipient of a $10,000 award from Cycle Computing. (Amazon initially promised an additional $2,500, but later upped its share to $9,500.) What appealed to the BigScience Challenge judges including CEO Stowe was the innovative aspect of the work and the potential to benefit humanity with potential disease treatments.

Ruotti is using the computational time to create a knowledgebase indexing system for stem cells and their derivatives. In this era of next-generation sequencing and personalized medicine, stem cell-based therapies will be vital in combating a multitude of diseases, but the pertinent information first needs to be organized into an accessible format – and this is precisely what Ruotti is working toward. When we spoke with Ruotti last week, he was still transferring the results of the run and preparing to build the database.


Ruotti’s Run – Basic Metrics

Using spot instances and some creative thinking, Cycle engineers were able to transform the monetary award into nearly 115 compute years, enabling 11,955 pairs of samples to be processed in one week. The total run cost $19,555, which works out to $0.0175 per core-hour or $116/hr. The project used 5,000 cores on average, 8,000 cores at peak, and accessed 78TB of storage in the Amazon cloud. Cycle noted an equivalent cluster comprised of 400 servers would cost nearly $2,000,000 to purchase outright – 100 times more than the AWS approach, not including the cost of storage.

To arrive at the number of compute years, take the total number of compute hours (1,003,404) and divide by the hours in one compute year (8,760 hours), which comes out to 114.54 years. In earth years, this would mean starting the calculation on a single-core server in 1897 in order to finish in 2012. 1897 just so happens to be the year that the term computer, as an electric-computation device, was first used.

“If you look at it that way, we could have started this calculation on a single-core server back in 1897,” remarked Stowe, “ran it through the entirety of the 20-century, from jazz of the roaring 20s, through the depression to the space race and the cold war and disco in the 80s and grudge and techno, all the way to Gangnam style, and finishing this year.”


Ruotti’s Run – Additional Information

>> NEXT: Spot Instances Save Money

Everyone on the project wanted to get the most out of the award dollars so the Cycle engineers considered the problem carefully. By employing Amazon’s spot pricing, the budget stretched to accommodate 114.5 years of computation, whereas the same money put toward on-demand instances would have generated just nine years of compute. The spot instance approach extracted nearly 13 times more computing from the award spend; however, there was a catch, as Ian Alderman, Cycle’s senior software engineer, explained: “If we bid, say, 15 cents, and the market for the server is 14 cents, we pay 14 cents, but if the market crosses 15 cents and goes up to 16 cents, then we lose the server and the job is interrupted.”

So the engineers needed to optimize the workflow to run on spots, while not allowing the interruptions to impact the workloads. This necessitated breaking the job into small components and being able to restart workloads as close to where they left off as possible. To provision the large number of instances, the team used schedulers, such as GridEngine, HTCondor, and Torque, and configured the cluster with Opscode Chef.

Compared to the 50,000 core use case, this job was about efficiency, said Stowe. Making the most of the compute-hours and supporting interruptions were key goals. Another aspect that was different was that instead of dealing with molecular data, this project processed genomic data. At its peak, the current project used 78 TB of data, bumping it into big data territory.

When I asked Stowe if it was fair to draw conclusions about utility supercomputing based on embarrassingly parallel workloads, he noted that more and more science workloads that were once rigid in their parallelism are now “pleasantly-parallel,” especially when it comes to the analysis phase. This enables researchers to achieve scale without the need for expensive high-speed interconnects and allows more options in how you run the computation (public cloud, private cloud, hybrid model, etc.). There’s a shift going on and genomics is a prime example, said Stowe. The massive amount of data coming off of instruments is inherently data-parallel and well-suited for high-throughput use cases.

Ruotti, for his part, was eager to cover the merits of the project, and noted how the Amazon-Cycle run generated enough data to build a useful resource that will in turn support future genomics work.

He explained how he and his colleagues at Morgridge Institute have established a large collection of genetic samples, including human embryonic cells and cells that are in the process of differentiating into other cell types. Out of about 800 samples that they’ve accumulated, they selected 124 samples for this project. Normally they would analyze the samples one by one depending on the needs of a given project, but the basis for this project is to run the comparison in an n-squared algorithm. Doing analysis on these 124×124 sample pairs, then gathering and recording information on which pairs are closer and farther apart.

The goal is to eventually build an inventory of every cell type they have in the lab. To begin with, this will allow them to cluster all the samples, but Ruotti notes an equally important benefit. The differentiating process is not linear, meaning that there are a lot of pathways a given cell can go into. The more information they have on the probabilities and ramifications of the different types of cell divergence, the more control they will be able to exert on the process of turning embryonic cells into desired cell types. So far they have developed some good protocols for transforming the embryonic cells into neural cells, hepatic cells and muscle cells, but there are still a lot of unanswered questions regarding the process.

Right now, the group at Morgridge is focused on building a useful resource with the data that they have, and the hope is that as they get more samples, they will be able to keep adding to the inventory in a streamlined way. And while Ruotti characterized the current stage as proof-of-concept, that did not get in the way of his enthusiasm or forward-thinking aspirations. He noted that there are other repositories of raw data such as the SCOR database, and perhaps these could be added to the inventory as well. He is confident that as more and more labs will start doing large genomics runs, they too will need a resource for querying samples.

As exciting as these first steps are, they open up the door to even more ground-breaking science and discovery, Ruotti remarked. “The field of next-generation sequencing is growing at an exponential rate,” he added, “We’re only going to get more data as the companies push the boundary on longer reads and more samples per run.”

The indexing system will provide a way for scientists to obtain information on the most current genes being looked at for their potential for treatments and cures. There are some resources out there currently, Ruotti noted, but they are not up-to-date as far as the latest next-generation sequencing and in terms of RNA, so his group hopes that the new system will provide the best way for scientists to query for their favorite genes.

As for in-house resources, the Morgridge Institute currently has a sequencer from Illumina, a 40-core Sun Grid Engine cluster. While considered a large cluster several years ago, it’s now one of their smaller resources. Although it’s generally sufficient for extracting information from one experiment, the process takes a few hours, and when there are multiple samples, this cluster becomes a bottleneck, Ruotti said. Public cloud resources, like the Cycle/Amazon solution, are also on their radar. The Morgridge Institute is in talks with the Condor Project to discuss ways to supplement their current resources with public cloud.

On the subject of using owned and rented computing resources in a complementary way, Stowe discussed some IP they’ve developed called Cement-Once. This is basically a cloud-bursting mechanism that takes advantage of as much internal capacity as possible, and when needed will provision additional resources externally.

“We definitely think there are large portions of our customer base that have internal HPC and potentially want to be able to run large compute both internally and externally when it’s appropriate, so we’ve done a considerable amount of work in enabling that area,” Stowe remarked. “We see that across multiple portions of our customer base. Internal environments are too small when you need them the most and too large every other time. Cloud has the potential to balance these imbalances.”

With the final bits from the 2011 contest still streaming in, Cycle Computing is keeping the momentum going with the announcement of a second annual BigScience Challenge. Interested applicants are asked to complete an entry explaining who they are and what big question they want to answer. Any and all researchers are invited to apply, but the focus for the contest is on big data and big compute problems and their big benefits to humanity.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This