Life Sciences Storage Issues and Computational Workflow Acceleration

By Nicole Hemsoth

October 8, 2012

Introduction

Life Sciences can mean different things to different people. In genomic research, it referrers to the art of sequencing; in BioPharma, it covers molecular dynamics and protein docking; and in clinical, electronic records. However, all three markets have one thing in common, the sequencing of the human genome and the control, analysis, and distribution of that data. Today with the continued decrease in sequencing costs, life sciences research is moving from beakers to bytes and increasingly relies on the analysis of large volumes of data. 

Data-dominated efforts today aim to accelerate drug R&D, improve clinical trials, and personalize medicine. Most of the work in these areas requires the use of high performance computing clusters or supercomputers to derive decision-making information from terabytes to petabytes of data.

Across these widely disparate areas of work, researchers face similar computational infrastructure problems that can impede progress. To avoid obstacles and accelerate their research, life scientists need a low-latency, high-performance computing infrastructure that delivers predictable and consistent performance. They also need to collaborate and share large datasets with upstream and downstream partners. And they need an infrastructure that supports automation to simplify data aggregation, assimilation, and management.

The need for speed

Life sciences research and development increasingly relies on computational analysis. Such analysis provides the critical information needed to make intelligent decisions about which new drug candidates hold promise and should be advanced and which should be put aside.

With the growing reliance on computational analysis, and the changes in data generation and usage, life sciences organizations need an IT infrastructure that ensures computational workflows are optimized and not impeded.

Pressure to run the workflows as fast as possible so research decisions can be made sooner comes from several business drivers.

Many pharmaceutical companies today have sparse new drug pipelines. Delays caused by slowdowns in research due to slow data analysis simply keep the pipelines empty.

Because less than one percent of all drug candidates make it to market and the cost of moving a drug along the development pipeline mounts hugely the further along it gets, knowing which drugs to fail out of the process early is key to financial success. Faster early-stage analysis provides the data needed to make an early decision providing a significant savings in time and investment.

Compounding the need to quickly identify promising candidates and fill the pipelines is the fact that many blockbuster drugs have gone or are going off-patent and must be replaced. In fact, patent expirations from 2010 to 2013 will jeopardize revenues amounting to more than $95 billion for ten of the largest drug companies, according to Nature.

Competition to fill the pipelines is heating up. The drastic reduction in new lab equipment operating costs is allowing even the smallest life sciences organizations to compete in early stage R&D.

These factors are forcing companies to change the way they approach new drug research.

First, there is a greater focus on computational analysis during early stage research and development. The idea is to use information-based models, simulations, virtual molecule screening, and other techniques identify promising new drug candidates quickly and kill off less promising candidates to avoid incurring the costs of later stage clinical trials, development, and approval.

Second, many organizations are seeking to reduce their R&D costs. To accomplish this while still trying to fill their pipelines, they are expanding collaborations with universities, non-profit organizations, and the government. Specifically, beyond opening offices in university-rich places like Cambridge, MA, many pharmaceutical and biotech companies are joining collaborative groups such as the Structural Genomics Consortium, a public-private partnership that supports the discovery of new medicines through open access research. There are also government-led early-stage R&D efforts, such as those underway at the National Center for Advancing Translational Sciences, a group with the goal of developing new methods and technologies to improve diagnostics capabilities and therapeutic efforts across a wide range of human diseases.

Third, the desire to cut costs is creating an emerging market for Sequencing-as-a-Service (SEQaaS). Rather than invest in the sequencing equipment, chemicals, and experienced staff needed to perform the operations, many companies are outsourcing their sequencing to providers such as Illumina, PerkinElmer, and others. This allows them to concentrate on other aspects of drug discovery and development pipeline.  

Storage complications and challenges that can impede analysis workflows

These business drivers, combined with the adoption of new lab technologies such as next-generation sequencing, confocal microscopy, and X-ray crystallography, are driving up the volumes of data that life sciences organizations must store and manage. These large volumes and the collaborative nature of life sciences research are placing new demands on storage solution performance and data manageability. 

For example, new lab equipment, particularly next-generation sequences are producing multiple terabytes of data per run that must be analyzed and compared to large genomic databases. And while the format of raw data from sequences has varied over time as sequencing vendors have incorporated different processing steps into their algorithms, organizations using the sequencing data must still perform post-sequencing computations and analysis on various size files to derive useful information. From an infrastructure perspective, the sequencing data needs to be staged on high-performance parallel storage arrays so analytic workflows can run at top speeds.

Another factor to consider is that much of the data generated in life sciences organizations now must be retained. When sequencing for clinical applications is approved by the FDA, the Health Insurance Portability and Accountability Act of 1996 (HIPAA) requires that this patient data be retained for 20+ years. 

In pharmaceutical companies, long-term access to experimental data is growing as companies seek indications for previously approved drugs. With pipelines sparse, this area of work is exploding. From a storage perspective, older data must be moved to lower cost storage after its initial analysis or use and then be easily found and migrated to higher performance storage when exploring its use for a new indication.

Complicating data management and computational workflows is that fact that life sciences research has become more multi-disciplinary and more collaborative. Within an organization, data from new lab equipment is incredibly rich and of interest to many groups. Researchers in the different disciplines use different analysis tools running on clients with different operating systems and they need to perform their analysis at different times in the data’s life cycle. This makes computational workflows highly unpredictable. This can result in a vastly different user experience from day-to-day. A run that takes two minutes one day might take 45 minutes the next.

An additional implication of the multi-disciplinary and more collaborative nature of life sciences research is that data increasingly must be shared. This can pose problems within a company and it certainly needs special attention when organizations team together and must share petabyte-size databases across widely dispersed geographical regions.

DDN as your technology partner

All of these factors mean storage plays an increasingly important role in life sciences success. Solutions must support highly variable workloads in an HPC environment and be capable of supporting the collaborative nature of the industry. They also must allow researchers using different clients and hosts to have shared access to the data needed for their analysis.

Additionally, solutions must provide life sciences organizations with the flexibility to store data for longer times on appropriate cost/performance devices, while offering data management tools to migrate and protect that data. And there must be a way to facilitate the sharing of very large datasets.

Traditional storage solutions can introduce major performance and management problems when scaled to meet today’s increased requirements for the life sciences. This is why the Cornell Center for Advanced Computing, the National Cancer Institute, TGen, Virginia Tech, the Wellcome Trust Sanger Institute, and many more life sciences organizations are partnering with DataDirect Networks (DDN).

DDN offers an array of storage solutions with different I/O and throughput capabilities to meet the cost/performance requirements of any life sciences workflow. The solutions are extremely scalable in capacity and density. Based on its Storage Fusion Architecture, the DDN SFA 12K line offers a number of firsts including up to 40 GB/s host throughput for reads AND writes, 3.6 PB per rack, and the ability to scale to more than 7.2 PB per system. Furthermore, DDN lets organizations control their cost and performance profile by mixing a variety of media in the same system – SSD, SAS, and SATA – to achieve the appropriate cost/performance mix for their applications.

By consolidating on DDN storage, organizations get fast, scalable storage that solves performance inconsistency issues and provides easy-to-manage long term data retention.

In addition, DDN offers several technologies that help with the common challenges in life sciences research.

For researchers that must share and exchange large datasets within their organization, with collaborative partners, or with sequencing providers, DDN offers Web Object Scaler (WOS), a scale-out cloud storage appliance solution. WOS is an object-based storage system that allows organizations to easily build and deploy their own storage clouds across geographically distributed sites. The storage can scale to unprecedented levels while still being managed as a single entity. WOS provides high-speed access to hyperscale-sized data in the cloud from anywhere in the world, enabling globally distributed users to collaborate as part of a powerful peer-to-peer workflow.

To simplify and automate data management issues so researchers from multiple disciplines can all access the same data, DDN has integrated WOS with the Integrated Rule-Oriented Data-management System (iRODS). The iRODS data grid is an open source, next-generation adaptive middleware architecture for data management that helps researchers organize, share, and find collections of data in file systems.

And to ensure researchers get a high-performance, consistent experience, DDN offers DirectMon, an advanced storage configuration and monitoring solution. DirectMon works across DDN’s line of DDN SFA Storage Arrays, as well as GRIDScaler and EXAScaler shared file system appliances. DirectMon removes the complexity out of managing storage, its ease-of-use features and notifications allow administrators to quickly resolve problems, freeing-up valuable time to concentrate on more important tasks.

For more information about DDN solutions for the life sciences, visit http://www.ddn.com/en/applications/biopharma

Additional information can be found by visiting
http://www.ddn.com/en/applications/life-sciences

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This