Life Sciences Storage Issues and Computational Workflow Acceleration

By Nicole Hemsoth

October 8, 2012

Introduction

Life Sciences can mean different things to different people. In genomic research, it referrers to the art of sequencing; in BioPharma, it covers molecular dynamics and protein docking; and in clinical, electronic records. However, all three markets have one thing in common, the sequencing of the human genome and the control, analysis, and distribution of that data. Today with the continued decrease in sequencing costs, life sciences research is moving from beakers to bytes and increasingly relies on the analysis of large volumes of data. 

Data-dominated efforts today aim to accelerate drug R&D, improve clinical trials, and personalize medicine. Most of the work in these areas requires the use of high performance computing clusters or supercomputers to derive decision-making information from terabytes to petabytes of data.

Across these widely disparate areas of work, researchers face similar computational infrastructure problems that can impede progress. To avoid obstacles and accelerate their research, life scientists need a low-latency, high-performance computing infrastructure that delivers predictable and consistent performance. They also need to collaborate and share large datasets with upstream and downstream partners. And they need an infrastructure that supports automation to simplify data aggregation, assimilation, and management.

The need for speed

Life sciences research and development increasingly relies on computational analysis. Such analysis provides the critical information needed to make intelligent decisions about which new drug candidates hold promise and should be advanced and which should be put aside.

With the growing reliance on computational analysis, and the changes in data generation and usage, life sciences organizations need an IT infrastructure that ensures computational workflows are optimized and not impeded.

Pressure to run the workflows as fast as possible so research decisions can be made sooner comes from several business drivers.

Many pharmaceutical companies today have sparse new drug pipelines. Delays caused by slowdowns in research due to slow data analysis simply keep the pipelines empty.

Because less than one percent of all drug candidates make it to market and the cost of moving a drug along the development pipeline mounts hugely the further along it gets, knowing which drugs to fail out of the process early is key to financial success. Faster early-stage analysis provides the data needed to make an early decision providing a significant savings in time and investment.

Compounding the need to quickly identify promising candidates and fill the pipelines is the fact that many blockbuster drugs have gone or are going off-patent and must be replaced. In fact, patent expirations from 2010 to 2013 will jeopardize revenues amounting to more than $95 billion for ten of the largest drug companies, according to Nature.

Competition to fill the pipelines is heating up. The drastic reduction in new lab equipment operating costs is allowing even the smallest life sciences organizations to compete in early stage R&D.

These factors are forcing companies to change the way they approach new drug research.

First, there is a greater focus on computational analysis during early stage research and development. The idea is to use information-based models, simulations, virtual molecule screening, and other techniques identify promising new drug candidates quickly and kill off less promising candidates to avoid incurring the costs of later stage clinical trials, development, and approval.

Second, many organizations are seeking to reduce their R&D costs. To accomplish this while still trying to fill their pipelines, they are expanding collaborations with universities, non-profit organizations, and the government. Specifically, beyond opening offices in university-rich places like Cambridge, MA, many pharmaceutical and biotech companies are joining collaborative groups such as the Structural Genomics Consortium, a public-private partnership that supports the discovery of new medicines through open access research. There are also government-led early-stage R&D efforts, such as those underway at the National Center for Advancing Translational Sciences, a group with the goal of developing new methods and technologies to improve diagnostics capabilities and therapeutic efforts across a wide range of human diseases.

Third, the desire to cut costs is creating an emerging market for Sequencing-as-a-Service (SEQaaS). Rather than invest in the sequencing equipment, chemicals, and experienced staff needed to perform the operations, many companies are outsourcing their sequencing to providers such as Illumina, PerkinElmer, and others. This allows them to concentrate on other aspects of drug discovery and development pipeline.  

Storage complications and challenges that can impede analysis workflows

These business drivers, combined with the adoption of new lab technologies such as next-generation sequencing, confocal microscopy, and X-ray crystallography, are driving up the volumes of data that life sciences organizations must store and manage. These large volumes and the collaborative nature of life sciences research are placing new demands on storage solution performance and data manageability. 

For example, new lab equipment, particularly next-generation sequences are producing multiple terabytes of data per run that must be analyzed and compared to large genomic databases. And while the format of raw data from sequences has varied over time as sequencing vendors have incorporated different processing steps into their algorithms, organizations using the sequencing data must still perform post-sequencing computations and analysis on various size files to derive useful information. From an infrastructure perspective, the sequencing data needs to be staged on high-performance parallel storage arrays so analytic workflows can run at top speeds.

Another factor to consider is that much of the data generated in life sciences organizations now must be retained. When sequencing for clinical applications is approved by the FDA, the Health Insurance Portability and Accountability Act of 1996 (HIPAA) requires that this patient data be retained for 20+ years. 

In pharmaceutical companies, long-term access to experimental data is growing as companies seek indications for previously approved drugs. With pipelines sparse, this area of work is exploding. From a storage perspective, older data must be moved to lower cost storage after its initial analysis or use and then be easily found and migrated to higher performance storage when exploring its use for a new indication.

Complicating data management and computational workflows is that fact that life sciences research has become more multi-disciplinary and more collaborative. Within an organization, data from new lab equipment is incredibly rich and of interest to many groups. Researchers in the different disciplines use different analysis tools running on clients with different operating systems and they need to perform their analysis at different times in the data’s life cycle. This makes computational workflows highly unpredictable. This can result in a vastly different user experience from day-to-day. A run that takes two minutes one day might take 45 minutes the next.

An additional implication of the multi-disciplinary and more collaborative nature of life sciences research is that data increasingly must be shared. This can pose problems within a company and it certainly needs special attention when organizations team together and must share petabyte-size databases across widely dispersed geographical regions.

DDN as your technology partner

All of these factors mean storage plays an increasingly important role in life sciences success. Solutions must support highly variable workloads in an HPC environment and be capable of supporting the collaborative nature of the industry. They also must allow researchers using different clients and hosts to have shared access to the data needed for their analysis.

Additionally, solutions must provide life sciences organizations with the flexibility to store data for longer times on appropriate cost/performance devices, while offering data management tools to migrate and protect that data. And there must be a way to facilitate the sharing of very large datasets.

Traditional storage solutions can introduce major performance and management problems when scaled to meet today’s increased requirements for the life sciences. This is why the Cornell Center for Advanced Computing, the National Cancer Institute, TGen, Virginia Tech, the Wellcome Trust Sanger Institute, and many more life sciences organizations are partnering with DataDirect Networks (DDN).

DDN offers an array of storage solutions with different I/O and throughput capabilities to meet the cost/performance requirements of any life sciences workflow. The solutions are extremely scalable in capacity and density. Based on its Storage Fusion Architecture, the DDN SFA 12K line offers a number of firsts including up to 40 GB/s host throughput for reads AND writes, 3.6 PB per rack, and the ability to scale to more than 7.2 PB per system. Furthermore, DDN lets organizations control their cost and performance profile by mixing a variety of media in the same system – SSD, SAS, and SATA – to achieve the appropriate cost/performance mix for their applications.

By consolidating on DDN storage, organizations get fast, scalable storage that solves performance inconsistency issues and provides easy-to-manage long term data retention.

In addition, DDN offers several technologies that help with the common challenges in life sciences research.

For researchers that must share and exchange large datasets within their organization, with collaborative partners, or with sequencing providers, DDN offers Web Object Scaler (WOS), a scale-out cloud storage appliance solution. WOS is an object-based storage system that allows organizations to easily build and deploy their own storage clouds across geographically distributed sites. The storage can scale to unprecedented levels while still being managed as a single entity. WOS provides high-speed access to hyperscale-sized data in the cloud from anywhere in the world, enabling globally distributed users to collaborate as part of a powerful peer-to-peer workflow.

To simplify and automate data management issues so researchers from multiple disciplines can all access the same data, DDN has integrated WOS with the Integrated Rule-Oriented Data-management System (iRODS). The iRODS data grid is an open source, next-generation adaptive middleware architecture for data management that helps researchers organize, share, and find collections of data in file systems.

And to ensure researchers get a high-performance, consistent experience, DDN offers DirectMon, an advanced storage configuration and monitoring solution. DirectMon works across DDN’s line of DDN SFA Storage Arrays, as well as GRIDScaler and EXAScaler shared file system appliances. DirectMon removes the complexity out of managing storage, its ease-of-use features and notifications allow administrators to quickly resolve problems, freeing-up valuable time to concentrate on more important tasks.

For more information about DDN solutions for the life sciences, visit http://www.ddn.com/en/applications/biopharma

Additional information can be found by visiting
http://www.ddn.com/en/applications/life-sciences

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Ohio Supercomputer Center Dedicates ‘Owens’ Cluster

March 29, 2017

In a dedication ceremony held earlier today (March 29), officials from Ohio Supercomputer Center (OSC) along with state representatives gathered to celebrate the launch of OSC’s newest cluster: Read more…

By Tiffany Trader

EU Ratchets up the Race to Exascale Computing

March 29, 2017

The race to expand HPC infrastructure, including exascale machines, to advance national and regional interests ratcheted up a notch yesterday with announcement that seven European countries – Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This