Life Sciences Storage Issues and Computational Workflow Acceleration

By Nicole Hemsoth

October 8, 2012

Introduction

Life Sciences can mean different things to different people. In genomic research, it referrers to the art of sequencing; in BioPharma, it covers molecular dynamics and protein docking; and in clinical, electronic records. However, all three markets have one thing in common, the sequencing of the human genome and the control, analysis, and distribution of that data. Today with the continued decrease in sequencing costs, life sciences research is moving from beakers to bytes and increasingly relies on the analysis of large volumes of data. 

Data-dominated efforts today aim to accelerate drug R&D, improve clinical trials, and personalize medicine. Most of the work in these areas requires the use of high performance computing clusters or supercomputers to derive decision-making information from terabytes to petabytes of data.

Across these widely disparate areas of work, researchers face similar computational infrastructure problems that can impede progress. To avoid obstacles and accelerate their research, life scientists need a low-latency, high-performance computing infrastructure that delivers predictable and consistent performance. They also need to collaborate and share large datasets with upstream and downstream partners. And they need an infrastructure that supports automation to simplify data aggregation, assimilation, and management.

The need for speed

Life sciences research and development increasingly relies on computational analysis. Such analysis provides the critical information needed to make intelligent decisions about which new drug candidates hold promise and should be advanced and which should be put aside.

With the growing reliance on computational analysis, and the changes in data generation and usage, life sciences organizations need an IT infrastructure that ensures computational workflows are optimized and not impeded.

Pressure to run the workflows as fast as possible so research decisions can be made sooner comes from several business drivers.

Many pharmaceutical companies today have sparse new drug pipelines. Delays caused by slowdowns in research due to slow data analysis simply keep the pipelines empty.

Because less than one percent of all drug candidates make it to market and the cost of moving a drug along the development pipeline mounts hugely the further along it gets, knowing which drugs to fail out of the process early is key to financial success. Faster early-stage analysis provides the data needed to make an early decision providing a significant savings in time and investment.

Compounding the need to quickly identify promising candidates and fill the pipelines is the fact that many blockbuster drugs have gone or are going off-patent and must be replaced. In fact, patent expirations from 2010 to 2013 will jeopardize revenues amounting to more than $95 billion for ten of the largest drug companies, according to Nature.

Competition to fill the pipelines is heating up. The drastic reduction in new lab equipment operating costs is allowing even the smallest life sciences organizations to compete in early stage R&D.

These factors are forcing companies to change the way they approach new drug research.

First, there is a greater focus on computational analysis during early stage research and development. The idea is to use information-based models, simulations, virtual molecule screening, and other techniques identify promising new drug candidates quickly and kill off less promising candidates to avoid incurring the costs of later stage clinical trials, development, and approval.

Second, many organizations are seeking to reduce their R&D costs. To accomplish this while still trying to fill their pipelines, they are expanding collaborations with universities, non-profit organizations, and the government. Specifically, beyond opening offices in university-rich places like Cambridge, MA, many pharmaceutical and biotech companies are joining collaborative groups such as the Structural Genomics Consortium, a public-private partnership that supports the discovery of new medicines through open access research. There are also government-led early-stage R&D efforts, such as those underway at the National Center for Advancing Translational Sciences, a group with the goal of developing new methods and technologies to improve diagnostics capabilities and therapeutic efforts across a wide range of human diseases.

Third, the desire to cut costs is creating an emerging market for Sequencing-as-a-Service (SEQaaS). Rather than invest in the sequencing equipment, chemicals, and experienced staff needed to perform the operations, many companies are outsourcing their sequencing to providers such as Illumina, PerkinElmer, and others. This allows them to concentrate on other aspects of drug discovery and development pipeline.  

Storage complications and challenges that can impede analysis workflows

These business drivers, combined with the adoption of new lab technologies such as next-generation sequencing, confocal microscopy, and X-ray crystallography, are driving up the volumes of data that life sciences organizations must store and manage. These large volumes and the collaborative nature of life sciences research are placing new demands on storage solution performance and data manageability. 

For example, new lab equipment, particularly next-generation sequences are producing multiple terabytes of data per run that must be analyzed and compared to large genomic databases. And while the format of raw data from sequences has varied over time as sequencing vendors have incorporated different processing steps into their algorithms, organizations using the sequencing data must still perform post-sequencing computations and analysis on various size files to derive useful information. From an infrastructure perspective, the sequencing data needs to be staged on high-performance parallel storage arrays so analytic workflows can run at top speeds.

Another factor to consider is that much of the data generated in life sciences organizations now must be retained. When sequencing for clinical applications is approved by the FDA, the Health Insurance Portability and Accountability Act of 1996 (HIPAA) requires that this patient data be retained for 20+ years. 

In pharmaceutical companies, long-term access to experimental data is growing as companies seek indications for previously approved drugs. With pipelines sparse, this area of work is exploding. From a storage perspective, older data must be moved to lower cost storage after its initial analysis or use and then be easily found and migrated to higher performance storage when exploring its use for a new indication.

Complicating data management and computational workflows is that fact that life sciences research has become more multi-disciplinary and more collaborative. Within an organization, data from new lab equipment is incredibly rich and of interest to many groups. Researchers in the different disciplines use different analysis tools running on clients with different operating systems and they need to perform their analysis at different times in the data’s life cycle. This makes computational workflows highly unpredictable. This can result in a vastly different user experience from day-to-day. A run that takes two minutes one day might take 45 minutes the next.

An additional implication of the multi-disciplinary and more collaborative nature of life sciences research is that data increasingly must be shared. This can pose problems within a company and it certainly needs special attention when organizations team together and must share petabyte-size databases across widely dispersed geographical regions.

DDN as your technology partner

All of these factors mean storage plays an increasingly important role in life sciences success. Solutions must support highly variable workloads in an HPC environment and be capable of supporting the collaborative nature of the industry. They also must allow researchers using different clients and hosts to have shared access to the data needed for their analysis.

Additionally, solutions must provide life sciences organizations with the flexibility to store data for longer times on appropriate cost/performance devices, while offering data management tools to migrate and protect that data. And there must be a way to facilitate the sharing of very large datasets.

Traditional storage solutions can introduce major performance and management problems when scaled to meet today’s increased requirements for the life sciences. This is why the Cornell Center for Advanced Computing, the National Cancer Institute, TGen, Virginia Tech, the Wellcome Trust Sanger Institute, and many more life sciences organizations are partnering with DataDirect Networks (DDN).

DDN offers an array of storage solutions with different I/O and throughput capabilities to meet the cost/performance requirements of any life sciences workflow. The solutions are extremely scalable in capacity and density. Based on its Storage Fusion Architecture, the DDN SFA 12K line offers a number of firsts including up to 40 GB/s host throughput for reads AND writes, 3.6 PB per rack, and the ability to scale to more than 7.2 PB per system. Furthermore, DDN lets organizations control their cost and performance profile by mixing a variety of media in the same system – SSD, SAS, and SATA – to achieve the appropriate cost/performance mix for their applications.

By consolidating on DDN storage, organizations get fast, scalable storage that solves performance inconsistency issues and provides easy-to-manage long term data retention.

In addition, DDN offers several technologies that help with the common challenges in life sciences research.

For researchers that must share and exchange large datasets within their organization, with collaborative partners, or with sequencing providers, DDN offers Web Object Scaler (WOS), a scale-out cloud storage appliance solution. WOS is an object-based storage system that allows organizations to easily build and deploy their own storage clouds across geographically distributed sites. The storage can scale to unprecedented levels while still being managed as a single entity. WOS provides high-speed access to hyperscale-sized data in the cloud from anywhere in the world, enabling globally distributed users to collaborate as part of a powerful peer-to-peer workflow.

To simplify and automate data management issues so researchers from multiple disciplines can all access the same data, DDN has integrated WOS with the Integrated Rule-Oriented Data-management System (iRODS). The iRODS data grid is an open source, next-generation adaptive middleware architecture for data management that helps researchers organize, share, and find collections of data in file systems.

And to ensure researchers get a high-performance, consistent experience, DDN offers DirectMon, an advanced storage configuration and monitoring solution. DirectMon works across DDN’s line of DDN SFA Storage Arrays, as well as GRIDScaler and EXAScaler shared file system appliances. DirectMon removes the complexity out of managing storage, its ease-of-use features and notifications allow administrators to quickly resolve problems, freeing-up valuable time to concentrate on more important tasks.

For more information about DDN solutions for the life sciences, visit http://www.ddn.com/en/applications/biopharma

Additional information can be found by visiting
http://www.ddn.com/en/applications/life-sciences

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This