Life Sciences Storage Issues and Computational Workflow Acceleration

By Nicole Hemsoth

October 8, 2012

Introduction

Life Sciences can mean different things to different people. In genomic research, it referrers to the art of sequencing; in BioPharma, it covers molecular dynamics and protein docking; and in clinical, electronic records. However, all three markets have one thing in common, the sequencing of the human genome and the control, analysis, and distribution of that data. Today with the continued decrease in sequencing costs, life sciences research is moving from beakers to bytes and increasingly relies on the analysis of large volumes of data. 

Data-dominated efforts today aim to accelerate drug R&D, improve clinical trials, and personalize medicine. Most of the work in these areas requires the use of high performance computing clusters or supercomputers to derive decision-making information from terabytes to petabytes of data.

Across these widely disparate areas of work, researchers face similar computational infrastructure problems that can impede progress. To avoid obstacles and accelerate their research, life scientists need a low-latency, high-performance computing infrastructure that delivers predictable and consistent performance. They also need to collaborate and share large datasets with upstream and downstream partners. And they need an infrastructure that supports automation to simplify data aggregation, assimilation, and management.

The need for speed

Life sciences research and development increasingly relies on computational analysis. Such analysis provides the critical information needed to make intelligent decisions about which new drug candidates hold promise and should be advanced and which should be put aside.

With the growing reliance on computational analysis, and the changes in data generation and usage, life sciences organizations need an IT infrastructure that ensures computational workflows are optimized and not impeded.

Pressure to run the workflows as fast as possible so research decisions can be made sooner comes from several business drivers.

Many pharmaceutical companies today have sparse new drug pipelines. Delays caused by slowdowns in research due to slow data analysis simply keep the pipelines empty.

Because less than one percent of all drug candidates make it to market and the cost of moving a drug along the development pipeline mounts hugely the further along it gets, knowing which drugs to fail out of the process early is key to financial success. Faster early-stage analysis provides the data needed to make an early decision providing a significant savings in time and investment.

Compounding the need to quickly identify promising candidates and fill the pipelines is the fact that many blockbuster drugs have gone or are going off-patent and must be replaced. In fact, patent expirations from 2010 to 2013 will jeopardize revenues amounting to more than $95 billion for ten of the largest drug companies, according to Nature.

Competition to fill the pipelines is heating up. The drastic reduction in new lab equipment operating costs is allowing even the smallest life sciences organizations to compete in early stage R&D.

These factors are forcing companies to change the way they approach new drug research.

First, there is a greater focus on computational analysis during early stage research and development. The idea is to use information-based models, simulations, virtual molecule screening, and other techniques identify promising new drug candidates quickly and kill off less promising candidates to avoid incurring the costs of later stage clinical trials, development, and approval.

Second, many organizations are seeking to reduce their R&D costs. To accomplish this while still trying to fill their pipelines, they are expanding collaborations with universities, non-profit organizations, and the government. Specifically, beyond opening offices in university-rich places like Cambridge, MA, many pharmaceutical and biotech companies are joining collaborative groups such as the Structural Genomics Consortium, a public-private partnership that supports the discovery of new medicines through open access research. There are also government-led early-stage R&D efforts, such as those underway at the National Center for Advancing Translational Sciences, a group with the goal of developing new methods and technologies to improve diagnostics capabilities and therapeutic efforts across a wide range of human diseases.

Third, the desire to cut costs is creating an emerging market for Sequencing-as-a-Service (SEQaaS). Rather than invest in the sequencing equipment, chemicals, and experienced staff needed to perform the operations, many companies are outsourcing their sequencing to providers such as Illumina, PerkinElmer, and others. This allows them to concentrate on other aspects of drug discovery and development pipeline.  

Storage complications and challenges that can impede analysis workflows

These business drivers, combined with the adoption of new lab technologies such as next-generation sequencing, confocal microscopy, and X-ray crystallography, are driving up the volumes of data that life sciences organizations must store and manage. These large volumes and the collaborative nature of life sciences research are placing new demands on storage solution performance and data manageability. 

For example, new lab equipment, particularly next-generation sequences are producing multiple terabytes of data per run that must be analyzed and compared to large genomic databases. And while the format of raw data from sequences has varied over time as sequencing vendors have incorporated different processing steps into their algorithms, organizations using the sequencing data must still perform post-sequencing computations and analysis on various size files to derive useful information. From an infrastructure perspective, the sequencing data needs to be staged on high-performance parallel storage arrays so analytic workflows can run at top speeds.

Another factor to consider is that much of the data generated in life sciences organizations now must be retained. When sequencing for clinical applications is approved by the FDA, the Health Insurance Portability and Accountability Act of 1996 (HIPAA) requires that this patient data be retained for 20+ years. 

In pharmaceutical companies, long-term access to experimental data is growing as companies seek indications for previously approved drugs. With pipelines sparse, this area of work is exploding. From a storage perspective, older data must be moved to lower cost storage after its initial analysis or use and then be easily found and migrated to higher performance storage when exploring its use for a new indication.

Complicating data management and computational workflows is that fact that life sciences research has become more multi-disciplinary and more collaborative. Within an organization, data from new lab equipment is incredibly rich and of interest to many groups. Researchers in the different disciplines use different analysis tools running on clients with different operating systems and they need to perform their analysis at different times in the data’s life cycle. This makes computational workflows highly unpredictable. This can result in a vastly different user experience from day-to-day. A run that takes two minutes one day might take 45 minutes the next.

An additional implication of the multi-disciplinary and more collaborative nature of life sciences research is that data increasingly must be shared. This can pose problems within a company and it certainly needs special attention when organizations team together and must share petabyte-size databases across widely dispersed geographical regions.

DDN as your technology partner

All of these factors mean storage plays an increasingly important role in life sciences success. Solutions must support highly variable workloads in an HPC environment and be capable of supporting the collaborative nature of the industry. They also must allow researchers using different clients and hosts to have shared access to the data needed for their analysis.

Additionally, solutions must provide life sciences organizations with the flexibility to store data for longer times on appropriate cost/performance devices, while offering data management tools to migrate and protect that data. And there must be a way to facilitate the sharing of very large datasets.

Traditional storage solutions can introduce major performance and management problems when scaled to meet today’s increased requirements for the life sciences. This is why the Cornell Center for Advanced Computing, the National Cancer Institute, TGen, Virginia Tech, the Wellcome Trust Sanger Institute, and many more life sciences organizations are partnering with DataDirect Networks (DDN).

DDN offers an array of storage solutions with different I/O and throughput capabilities to meet the cost/performance requirements of any life sciences workflow. The solutions are extremely scalable in capacity and density. Based on its Storage Fusion Architecture, the DDN SFA 12K line offers a number of firsts including up to 40 GB/s host throughput for reads AND writes, 3.6 PB per rack, and the ability to scale to more than 7.2 PB per system. Furthermore, DDN lets organizations control their cost and performance profile by mixing a variety of media in the same system – SSD, SAS, and SATA – to achieve the appropriate cost/performance mix for their applications.

By consolidating on DDN storage, organizations get fast, scalable storage that solves performance inconsistency issues and provides easy-to-manage long term data retention.

In addition, DDN offers several technologies that help with the common challenges in life sciences research.

For researchers that must share and exchange large datasets within their organization, with collaborative partners, or with sequencing providers, DDN offers Web Object Scaler (WOS), a scale-out cloud storage appliance solution. WOS is an object-based storage system that allows organizations to easily build and deploy their own storage clouds across geographically distributed sites. The storage can scale to unprecedented levels while still being managed as a single entity. WOS provides high-speed access to hyperscale-sized data in the cloud from anywhere in the world, enabling globally distributed users to collaborate as part of a powerful peer-to-peer workflow.

To simplify and automate data management issues so researchers from multiple disciplines can all access the same data, DDN has integrated WOS with the Integrated Rule-Oriented Data-management System (iRODS). The iRODS data grid is an open source, next-generation adaptive middleware architecture for data management that helps researchers organize, share, and find collections of data in file systems.

And to ensure researchers get a high-performance, consistent experience, DDN offers DirectMon, an advanced storage configuration and monitoring solution. DirectMon works across DDN’s line of DDN SFA Storage Arrays, as well as GRIDScaler and EXAScaler shared file system appliances. DirectMon removes the complexity out of managing storage, its ease-of-use features and notifications allow administrators to quickly resolve problems, freeing-up valuable time to concentrate on more important tasks.

For more information about DDN solutions for the life sciences, visit http://www.ddn.com/en/applications/biopharma

Additional information can be found by visiting
http://www.ddn.com/en/applications/life-sciences

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Challenges Face Astroinformatics as It Sorts Through the Stars

June 15, 2018

You might have seen one of those YouTube videos: they begin on Earth, slowly zooming out to the Moon, the Solar System, the Milky Way, beyond – and suddenly, you’re looking at trillions of stars. It’s a lot to take Read more…

By Oliver Peckham

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

SDSC Researchers Use Machine Learning to More Accurately Model Water

June 13, 2018

Water – H2O – is a simple but fascinating (and useful) compound. San Diego Supercomputing Center researchers used machine learning techniques to develop models for simulations of water with “unprecedented accuracy. Read more…

By Staff

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

Fracas in Frankfurt: ISC18 Cluster Competition Teams Unveiled

June 6, 2018

The Student Cluster Competition season heats up with the seventh edition of the ISC Student Cluster Competition, slated to begin on June 25th in Frankfurt, Germ Read more…

By Dan Olds

Japan Starts Up 3-Petaflops ‘ATERUI II’ Cray Supercomputer

June 5, 2018

The world's most powerful supercomputer for astrophysical calculations has begun operations in Japan. The announcement comes from the National Astronomical Obse Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This