Chasing 1000X: The Future of Supercomputing Is Unbalanced

By Andrew Jones

October 10, 2012

Our supercomputing community is the world of 1000X. That is how we introduce ourselves – “think thousands of times more powerful than your laptop.” We proudly proclaim our thousands of cores, nodes, kilowatts, gigabytes, cables, and so on.

We even measure our progress by 1000X: the terascale barrier (“smashed” according to the tone of the accompanying press release) then a 1000X to the petascale barrier (“shattered” as the marketing machine informed us) and now chasing 1000X to the exascale barrier (which will be “cataclysmically destroyed” I presume).

These barriers are fun, but nonsense. Obviously 1.01 petaflops of computing power is not disruptively more capable than 0.99 petaflops, nor is it qualitatively more technically challenging. So perhaps the better description is “crept past the terascale marker” and “sauntered by the petascale signpost?”

As a community we have, for several decades now, developed technologies and deployed systems that have grown through the real challenges identified for each 1000X increment. And we have done this so effectively that each “barrier” is very soft by the time we come to deploy systems of that size. That doesn’t undermine the technical challenges involved in each case, nor the efforts of those who have mastered those challenges. But they have mostly been solved by aggressive evolution incited by the occasional disruptive kick in the behind.

Even though we use 1000X as our badge of meaningful advance, we can be very narrow in how we apply that across the breadth of our empire. We mostly tie it to speed or size of the machines – a thousand times faster or bigger. We are starting to grow group behavior for some other uses, for example, 1000X more power efficient. But we are still focusing on the machines.

Performance is fundamental to the value proposition of high performance computing, whether 10X or 1000X. And even in the case of 1000X performance, there is much more we can explore than we do now. The obvious opportunity is to recognize that such performance is most effectively obtained not from hardware alone, but also from innovation in algorithms and software implementation.

I regularly write on this topic at my blog and speak on this topic at conferences and private events. But at one recent IDC HPC User Forum the conversation turned to one of my other favorite themes on what we can do better.

There is much more to our community that we should look at for step change, innovation and leadership than purely performance. Why do we not target the same 1000X in other areas? Think of the benefits of supercomputing, at any scale, being a thousand-fold easier to use. Not benefits to the existing hardcore tweakers of MPI, since these folks don’t need (or even desire?) easy to use. They need performance and the flexibility of direct access to the capabilities.

What about the benefits to everyone else? And I said users. Not programmers. Not all users of HPC are programmers (a working assumption that supercomputer centers often default to). Many users of HPC just run applications. Someone else has done the programming for them, either in-house development teams or codes from commercial providers or other research groups, etc.

How different is our ease-of-use experience with other computing technology? Think of your laptop for office tasks; your tablet computer for consuming Web and media content; and your smartphone for processing emails. Compare those user experiences with HPC.

We take something with a thousand times the compute power and make it harder – even arcane – to use! A significant portion of the computer power on those consumer devices is applied to the user interaction experience. Surely, with a few spare tens of teraflops to play with – only a few percent of our petascale supercomputers – we can come up with a more human-friendly interaction than batch scripts. No, it won’t be more efficient. Tough!

Our community has chased efficiency in utilization of the compute resource arguably way beyond its cost-benefit pay-off and into the realm of limiting the potential of the systems/services for flexibility in use cases and attractiveness to new users.
And that brings me to another 1000X: the growth of HPC to a thousand times more users. Pick your favorite label of the year: personal supercomputing (possibly self-contradictory), missing middle (who wants to be someone else’s middle?), HPC for the masses (are we talking revolutions?), democratization of HPC (in my view the worst label of the lot – HPC shouldn’t be worrying about democracy or not), and so on. This user growth is how the technology, or rather, its core proposition, can benefit society and the economy with much more immediate, widespread and direct impact.

Driving the 500 fastest supercomputers in the world to a thousand times their performance does deliver value to the economy and society. Not just through the computing technology advances they inspire and require, but especially through the scientific, medical and engineering advances their use enables. But each new group of engineers and scientists that are able to exploit effective modeling and simulation in their research and design can invigorate their contribution to the economy.

Multiply these individual effects by 1000X and we might see light shining into the knowledge economy that is the dream of politicians the world over. Creating and sustaining a high-tech economy doesn’t happen by a handful of leadership supercomputers used by the few. It happens by doing that and also enabling 1000X more companies to use HPC techniques. Both upward and outward are needed.

Our existing HPC community has to play its role in this. We cannot just focus on driving the fastest machines a thousand times faster. Critically, we have to give equal peer recognition to those who focus on driving the use of the technology a thousand times broader and a thousand times easier to use.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This