Chasing 1000X: The Future of Supercomputing Is Unbalanced

By Andrew Jones

October 10, 2012

Our supercomputing community is the world of 1000X. That is how we introduce ourselves – “think thousands of times more powerful than your laptop.” We proudly proclaim our thousands of cores, nodes, kilowatts, gigabytes, cables, and so on.

We even measure our progress by 1000X: the terascale barrier (“smashed” according to the tone of the accompanying press release) then a 1000X to the petascale barrier (“shattered” as the marketing machine informed us) and now chasing 1000X to the exascale barrier (which will be “cataclysmically destroyed” I presume).

These barriers are fun, but nonsense. Obviously 1.01 petaflops of computing power is not disruptively more capable than 0.99 petaflops, nor is it qualitatively more technically challenging. So perhaps the better description is “crept past the terascale marker” and “sauntered by the petascale signpost?”

As a community we have, for several decades now, developed technologies and deployed systems that have grown through the real challenges identified for each 1000X increment. And we have done this so effectively that each “barrier” is very soft by the time we come to deploy systems of that size. That doesn’t undermine the technical challenges involved in each case, nor the efforts of those who have mastered those challenges. But they have mostly been solved by aggressive evolution incited by the occasional disruptive kick in the behind.

Even though we use 1000X as our badge of meaningful advance, we can be very narrow in how we apply that across the breadth of our empire. We mostly tie it to speed or size of the machines – a thousand times faster or bigger. We are starting to grow group behavior for some other uses, for example, 1000X more power efficient. But we are still focusing on the machines.

Performance is fundamental to the value proposition of high performance computing, whether 10X or 1000X. And even in the case of 1000X performance, there is much more we can explore than we do now. The obvious opportunity is to recognize that such performance is most effectively obtained not from hardware alone, but also from innovation in algorithms and software implementation.

I regularly write on this topic at my blog and speak on this topic at conferences and private events. But at one recent IDC HPC User Forum the conversation turned to one of my other favorite themes on what we can do better.

There is much more to our community that we should look at for step change, innovation and leadership than purely performance. Why do we not target the same 1000X in other areas? Think of the benefits of supercomputing, at any scale, being a thousand-fold easier to use. Not benefits to the existing hardcore tweakers of MPI, since these folks don’t need (or even desire?) easy to use. They need performance and the flexibility of direct access to the capabilities.

What about the benefits to everyone else? And I said users. Not programmers. Not all users of HPC are programmers (a working assumption that supercomputer centers often default to). Many users of HPC just run applications. Someone else has done the programming for them, either in-house development teams or codes from commercial providers or other research groups, etc.

How different is our ease-of-use experience with other computing technology? Think of your laptop for office tasks; your tablet computer for consuming Web and media content; and your smartphone for processing emails. Compare those user experiences with HPC.

We take something with a thousand times the compute power and make it harder – even arcane – to use! A significant portion of the computer power on those consumer devices is applied to the user interaction experience. Surely, with a few spare tens of teraflops to play with – only a few percent of our petascale supercomputers – we can come up with a more human-friendly interaction than batch scripts. No, it won’t be more efficient. Tough!

Our community has chased efficiency in utilization of the compute resource arguably way beyond its cost-benefit pay-off and into the realm of limiting the potential of the systems/services for flexibility in use cases and attractiveness to new users.
And that brings me to another 1000X: the growth of HPC to a thousand times more users. Pick your favorite label of the year: personal supercomputing (possibly self-contradictory), missing middle (who wants to be someone else’s middle?), HPC for the masses (are we talking revolutions?), democratization of HPC (in my view the worst label of the lot – HPC shouldn’t be worrying about democracy or not), and so on. This user growth is how the technology, or rather, its core proposition, can benefit society and the economy with much more immediate, widespread and direct impact.

Driving the 500 fastest supercomputers in the world to a thousand times their performance does deliver value to the economy and society. Not just through the computing technology advances they inspire and require, but especially through the scientific, medical and engineering advances their use enables. But each new group of engineers and scientists that are able to exploit effective modeling and simulation in their research and design can invigorate their contribution to the economy.

Multiply these individual effects by 1000X and we might see light shining into the knowledge economy that is the dream of politicians the world over. Creating and sustaining a high-tech economy doesn’t happen by a handful of leadership supercomputers used by the few. It happens by doing that and also enabling 1000X more companies to use HPC techniques. Both upward and outward are needed.

Our existing HPC community has to play its role in this. We cannot just focus on driving the fastest machines a thousand times faster. Critically, we have to give equal peer recognition to those who focus on driving the use of the technology a thousand times broader and a thousand times easier to use.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU--and a refresh of its inference server software packaged as Read more…

By George Leopold

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

NSF Highlights Expanded Efforts for Broadening Participation in Computing

September 13, 2018

Today, the Directorate of Computer and Information Science and Engineering (CISE) of the NSF released a letter highlighting the expansion of its broadening participation in computing efforts. The letter was penned by Jam Read more…

By Staff

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This