Chasing 1000X: The Future of Supercomputing Is Unbalanced

By Andrew Jones

October 10, 2012

Our supercomputing community is the world of 1000X. That is how we introduce ourselves – “think thousands of times more powerful than your laptop.” We proudly proclaim our thousands of cores, nodes, kilowatts, gigabytes, cables, and so on.

We even measure our progress by 1000X: the terascale barrier (“smashed” according to the tone of the accompanying press release) then a 1000X to the petascale barrier (“shattered” as the marketing machine informed us) and now chasing 1000X to the exascale barrier (which will be “cataclysmically destroyed” I presume).

These barriers are fun, but nonsense. Obviously 1.01 petaflops of computing power is not disruptively more capable than 0.99 petaflops, nor is it qualitatively more technically challenging. So perhaps the better description is “crept past the terascale marker” and “sauntered by the petascale signpost?”

As a community we have, for several decades now, developed technologies and deployed systems that have grown through the real challenges identified for each 1000X increment. And we have done this so effectively that each “barrier” is very soft by the time we come to deploy systems of that size. That doesn’t undermine the technical challenges involved in each case, nor the efforts of those who have mastered those challenges. But they have mostly been solved by aggressive evolution incited by the occasional disruptive kick in the behind.

Even though we use 1000X as our badge of meaningful advance, we can be very narrow in how we apply that across the breadth of our empire. We mostly tie it to speed or size of the machines – a thousand times faster or bigger. We are starting to grow group behavior for some other uses, for example, 1000X more power efficient. But we are still focusing on the machines.

Performance is fundamental to the value proposition of high performance computing, whether 10X or 1000X. And even in the case of 1000X performance, there is much more we can explore than we do now. The obvious opportunity is to recognize that such performance is most effectively obtained not from hardware alone, but also from innovation in algorithms and software implementation.

I regularly write on this topic at my blog and speak on this topic at conferences and private events. But at one recent IDC HPC User Forum the conversation turned to one of my other favorite themes on what we can do better.

There is much more to our community that we should look at for step change, innovation and leadership than purely performance. Why do we not target the same 1000X in other areas? Think of the benefits of supercomputing, at any scale, being a thousand-fold easier to use. Not benefits to the existing hardcore tweakers of MPI, since these folks don’t need (or even desire?) easy to use. They need performance and the flexibility of direct access to the capabilities.

What about the benefits to everyone else? And I said users. Not programmers. Not all users of HPC are programmers (a working assumption that supercomputer centers often default to). Many users of HPC just run applications. Someone else has done the programming for them, either in-house development teams or codes from commercial providers or other research groups, etc.

How different is our ease-of-use experience with other computing technology? Think of your laptop for office tasks; your tablet computer for consuming Web and media content; and your smartphone for processing emails. Compare those user experiences with HPC.

We take something with a thousand times the compute power and make it harder – even arcane – to use! A significant portion of the computer power on those consumer devices is applied to the user interaction experience. Surely, with a few spare tens of teraflops to play with – only a few percent of our petascale supercomputers – we can come up with a more human-friendly interaction than batch scripts. No, it won’t be more efficient. Tough!

Our community has chased efficiency in utilization of the compute resource arguably way beyond its cost-benefit pay-off and into the realm of limiting the potential of the systems/services for flexibility in use cases and attractiveness to new users.
And that brings me to another 1000X: the growth of HPC to a thousand times more users. Pick your favorite label of the year: personal supercomputing (possibly self-contradictory), missing middle (who wants to be someone else’s middle?), HPC for the masses (are we talking revolutions?), democratization of HPC (in my view the worst label of the lot – HPC shouldn’t be worrying about democracy or not), and so on. This user growth is how the technology, or rather, its core proposition, can benefit society and the economy with much more immediate, widespread and direct impact.

Driving the 500 fastest supercomputers in the world to a thousand times their performance does deliver value to the economy and society. Not just through the computing technology advances they inspire and require, but especially through the scientific, medical and engineering advances their use enables. But each new group of engineers and scientists that are able to exploit effective modeling and simulation in their research and design can invigorate their contribution to the economy.

Multiply these individual effects by 1000X and we might see light shining into the knowledge economy that is the dream of politicians the world over. Creating and sustaining a high-tech economy doesn’t happen by a handful of leadership supercomputers used by the few. It happens by doing that and also enabling 1000X more companies to use HPC techniques. Both upward and outward are needed.

Our existing HPC community has to play its role in this. We cannot just focus on driving the fastest machines a thousand times faster. Critically, we have to give equal peer recognition to those who focus on driving the use of the technology a thousand times broader and a thousand times easier to use.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

New Algorithm Overcomes Hurdle in Fusion Energy Simulation

January 15, 2022

The exascale era has brought with it a bevy of fusion energy simulation projects, aiming to stabilize the notoriously delicate—and so far, unmastered—clean energy source that would transform the world virtually overn Read more…

Summit Powers Novel Protein Function Prediction Work

January 13, 2022

There are hundreds of millions of sequenced proteins and counting—but only 170,000 have had their structures solved by researchers, bottlenecking our understanding of proteins and their functions across organisms’ ge Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to efforts to improve the underlying ‘noisy’ hardware, there's be Read more…

AWS Solution Channel

shutterstock 377963800

New – Amazon EC2 Hpc6a Instance Optimized for High Performance Computing

High Performance Computing (HPC) allows scientists and engineers to solve complex, compute-intensive problems such as computational fluid dynamics (CFD), weather forecasting, and genomics. Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

Edge to Exascale: A Trend to Watch in 2022

January 5, 2022

Edge computing is an approach in which the data is processed and analyzed at the point of origin – the place where the data is generated. This is done to make data more accessible to end-point devices, or users, and to reduce the response time for data requests. HPC-class computing and networking technologies are critical to many edge use cases, and the intersection of HPC and ‘edge’ promises to be a hot topic in 2022. Read more…

Citing ‘Shortfalls,’ NOAA Targets Hundred-Fold HPC Increase Over Next Decade

January 5, 2022

From upgrading the Global Forecast System (GFS) to acquiring new supercomputers, the National Oceanic and Atmospheric Administration (NOAA) has been making big moves in the HPC sphere over the last few years—but now it’s setting the bar even higher. In a new report, NOAA’s Science Advisory Board (SAB) highlighted... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire