The Future of Workload Management

By Chad Harrington

October 12, 2012

The essayist Paul Valery once quipped, “The trouble with our times is that the future is not what it used to be.” Surely, there is truth in that. The future of workload management continues to evolve; it is definitely not what it used to be.

As we look toward the future of workload management, we see three major trends: application insight, big data awareness, and HPC clouds. The trends are inter-related and we’ll discuss each in turn.

Application Insight

First, workload managers need to have greater insight into the applications they run. The more deeply the workload manager can understand the workload, the more efficiently it can schedule, manage, and adapt the computing environment. Today’s workload managers understand basic workload requirements and can track an application’s progress. However, there is more that can be done. In the future, we’ll see more emphasis on understanding an application’s purpose and key metrics. If the workload manager understands the application’s current and future needs, it can make much more optimal decisions. Metrics such as I/O bandwidth, memory allocation, storage space, CPU and GPU cycles, etc., all help the workload manager understand an application in order to optimally manage it.

Application-specific metrics, such as simulations per second, genes matched per second, etc., are more important than generic CPU and memory metrics. They best describe an application’s performance. By monitoring these application-specific metrics, the workload manager can understand how system-level variables impact application performance. For instance, an application-aware workload manager could observe that a particular application’s performance degrades substantially when it runs at the same time as a another specific application. Armed with this data, the workload manager can make sure those two conflicting applications do not run at the same time.

Big Data Awareness

Closely related to the application insight trend, we see increasing demand for big data awareness. Modern scientific computing operates on massive amounts of data, far more than ever before. Managing this flood of data is difficult; the future of workload management depends on being able to efficiently manage it.

Specifically, big data applications require I/O performance that is appropriate to the application. With multiple applications running simultaneously in a cluster, the workload manager needs to understand and satisfy the I/O needs of each application. A Big Data-aware workload manager will be able to schedule the various applications, such that their I/O demands do not conflict, ensuring that the required storage performance is available when it is needed.

Workload managers of the future will integrate directly with the storage management system. This will allow the workload manager to control the I/O allocation of each application, ensuring that no application monopolizes the I/O bandwidth. When multiple applications are contending for the same physical disk drive, the drive head thrashes between servicing each of the conflicting requests. This data contention can cause a 100-fold decrease in performance. With the workload manager directly managing the storage system, it can remove this thrashing and greatly increase application performance.

I/O performance also heavily depends on data locality. Generally speaking, today’s workload managers treat data as blobs of raw bytes, to be shuffled about with little understanding of their content. In the future, workload managers will increasingly understand the data’s structure and attributes. For example, a future workload manager could understand that a particular application uses structured data made up of small records which are randomly accessed. The workload manager could then allocate more I/O operations per second to that application than to a traditional batch-processing application, which reads sequentially from the disk. By understanding the different I/O needs of the different applications, the workload manager can exploit those factors in their scheduling decisions.

Virtualization and HPC Cloud

Lastly, we predict the continued rise of virtualization and HPC clouds. This is perhaps the biggest future trend for workload management. Historically, virtualization was anathema to high performance computing practitioners. The so-called virtualization tax, or performance penalty caused by virtualization, was too high a price to pay for high-performance workloads.

However, in recent years, this penalty has decreased to the point of being almost negligible for many applications. This trend, combined with virtualization’s greatly increased flexibility, has made virtualization a growing tool in the HPC arsenal. Virtual machines can be easily started, stopped, moved, stored, and altered, and are easier for the workload manager to schedule and control. This increased flexibility results in higher overall system utilization and greater return on investment. As a result, more and more HPC sites are adopting virtualization for a wider variety of workloads.

Taking virtualization to the next level, HPC clouds combine automated machine provisioning with workload management technologies, pay-per-use cost models, and self-service job submission. Instead of manually provisioning nodes for new compute jobs, an HPC cloud automatically provisions the appropriate environment as needed, based on the jobs submitted. These technologies work together to lower costs and increase system utilization.

HPC clouds can be public or private. Public clouds are operated by a third party who provides computing services to the public. Private clouds are operated by a particular HPC site for their own use, typically using hardware they own. Private clouds provide flexibility and cost advantages of the cloud model while still providing the security and control that many HPC users prefer.

HPC clouds increase the accessibility and flexibility of HPC systems. This brings HPC to a wider audience and lowers the overall cost of HPC. As more users take advantage of HPC, the demands become more varied. Tomorrow’s workload managers will have to cope with these realities, dealing with more users and a wider variety of workloads, both physical and virtual.

The Future Is Not Static

As Valery intimated, the future is not static. As our world changes, the trends that drive the future change with it. Application awareness, big data, and HPC clouds are changing how we do scientific computing. Workload managers must continue to evolve along with these trends.

About the Author

Chad Harrington manages Adaptive Computing‘s worldwide marketing efforts. Prior to Adaptive, Chad was a strategy consultant, helping companies increase shareholder value. Previously, he was CEO and founder of DataScaler, a database technology company which Oracle acquired in 2010. He has a history of success, holding executive, marketing, and business development roles at companies that were acquired by Symantec, McAfee, Check Point, and Oracle. As an information technology veteran, Chad speaks at industry conferences and in the media about technology trends such as cloud computing, data center architecture, security, and the future of computing. He has appeared on CNN, Marketwatch, Univision, and in other major media outlets. Chad holds a Computer Engineering degree from Brigham Young University.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National L Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This