The Future of Workload Management

By Chad Harrington

October 12, 2012

The essayist Paul Valery once quipped, “The trouble with our times is that the future is not what it used to be.” Surely, there is truth in that. The future of workload management continues to evolve; it is definitely not what it used to be.

As we look toward the future of workload management, we see three major trends: application insight, big data awareness, and HPC clouds. The trends are inter-related and we’ll discuss each in turn.

Application Insight

First, workload managers need to have greater insight into the applications they run. The more deeply the workload manager can understand the workload, the more efficiently it can schedule, manage, and adapt the computing environment. Today’s workload managers understand basic workload requirements and can track an application’s progress. However, there is more that can be done. In the future, we’ll see more emphasis on understanding an application’s purpose and key metrics. If the workload manager understands the application’s current and future needs, it can make much more optimal decisions. Metrics such as I/O bandwidth, memory allocation, storage space, CPU and GPU cycles, etc., all help the workload manager understand an application in order to optimally manage it.

Application-specific metrics, such as simulations per second, genes matched per second, etc., are more important than generic CPU and memory metrics. They best describe an application’s performance. By monitoring these application-specific metrics, the workload manager can understand how system-level variables impact application performance. For instance, an application-aware workload manager could observe that a particular application’s performance degrades substantially when it runs at the same time as a another specific application. Armed with this data, the workload manager can make sure those two conflicting applications do not run at the same time.

Big Data Awareness

Closely related to the application insight trend, we see increasing demand for big data awareness. Modern scientific computing operates on massive amounts of data, far more than ever before. Managing this flood of data is difficult; the future of workload management depends on being able to efficiently manage it.

Specifically, big data applications require I/O performance that is appropriate to the application. With multiple applications running simultaneously in a cluster, the workload manager needs to understand and satisfy the I/O needs of each application. A Big Data-aware workload manager will be able to schedule the various applications, such that their I/O demands do not conflict, ensuring that the required storage performance is available when it is needed.

Workload managers of the future will integrate directly with the storage management system. This will allow the workload manager to control the I/O allocation of each application, ensuring that no application monopolizes the I/O bandwidth. When multiple applications are contending for the same physical disk drive, the drive head thrashes between servicing each of the conflicting requests. This data contention can cause a 100-fold decrease in performance. With the workload manager directly managing the storage system, it can remove this thrashing and greatly increase application performance.

I/O performance also heavily depends on data locality. Generally speaking, today’s workload managers treat data as blobs of raw bytes, to be shuffled about with little understanding of their content. In the future, workload managers will increasingly understand the data’s structure and attributes. For example, a future workload manager could understand that a particular application uses structured data made up of small records which are randomly accessed. The workload manager could then allocate more I/O operations per second to that application than to a traditional batch-processing application, which reads sequentially from the disk. By understanding the different I/O needs of the different applications, the workload manager can exploit those factors in their scheduling decisions.

Virtualization and HPC Cloud

Lastly, we predict the continued rise of virtualization and HPC clouds. This is perhaps the biggest future trend for workload management. Historically, virtualization was anathema to high performance computing practitioners. The so-called virtualization tax, or performance penalty caused by virtualization, was too high a price to pay for high-performance workloads.

However, in recent years, this penalty has decreased to the point of being almost negligible for many applications. This trend, combined with virtualization’s greatly increased flexibility, has made virtualization a growing tool in the HPC arsenal. Virtual machines can be easily started, stopped, moved, stored, and altered, and are easier for the workload manager to schedule and control. This increased flexibility results in higher overall system utilization and greater return on investment. As a result, more and more HPC sites are adopting virtualization for a wider variety of workloads.

Taking virtualization to the next level, HPC clouds combine automated machine provisioning with workload management technologies, pay-per-use cost models, and self-service job submission. Instead of manually provisioning nodes for new compute jobs, an HPC cloud automatically provisions the appropriate environment as needed, based on the jobs submitted. These technologies work together to lower costs and increase system utilization.

HPC clouds can be public or private. Public clouds are operated by a third party who provides computing services to the public. Private clouds are operated by a particular HPC site for their own use, typically using hardware they own. Private clouds provide flexibility and cost advantages of the cloud model while still providing the security and control that many HPC users prefer.

HPC clouds increase the accessibility and flexibility of HPC systems. This brings HPC to a wider audience and lowers the overall cost of HPC. As more users take advantage of HPC, the demands become more varied. Tomorrow’s workload managers will have to cope with these realities, dealing with more users and a wider variety of workloads, both physical and virtual.

The Future Is Not Static

As Valery intimated, the future is not static. As our world changes, the trends that drive the future change with it. Application awareness, big data, and HPC clouds are changing how we do scientific computing. Workload managers must continue to evolve along with these trends.

About the Author

Chad Harrington manages Adaptive Computing‘s worldwide marketing efforts. Prior to Adaptive, Chad was a strategy consultant, helping companies increase shareholder value. Previously, he was CEO and founder of DataScaler, a database technology company which Oracle acquired in 2010. He has a history of success, holding executive, marketing, and business development roles at companies that were acquired by Symantec, McAfee, Check Point, and Oracle. As an information technology veteran, Chad speaks at industry conferences and in the media about technology trends such as cloud computing, data center architecture, security, and the future of computing. He has appeared on CNN, Marketwatch, Univision, and in other major media outlets. Chad holds a Computer Engineering degree from Brigham Young University.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Perverse Incentives? How Economics (Mis-)shaped Academic Science

July 12, 2017

The unintended consequences of how we fund academic research—in the U.S. and elsewhere—are strangling innovation, putting universities into debt and creatin Read more…

By Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This