The Future of Workload Management

By Chad Harrington

October 12, 2012

The essayist Paul Valery once quipped, “The trouble with our times is that the future is not what it used to be.” Surely, there is truth in that. The future of workload management continues to evolve; it is definitely not what it used to be.

As we look toward the future of workload management, we see three major trends: application insight, big data awareness, and HPC clouds. The trends are inter-related and we’ll discuss each in turn.

Application Insight

First, workload managers need to have greater insight into the applications they run. The more deeply the workload manager can understand the workload, the more efficiently it can schedule, manage, and adapt the computing environment. Today’s workload managers understand basic workload requirements and can track an application’s progress. However, there is more that can be done. In the future, we’ll see more emphasis on understanding an application’s purpose and key metrics. If the workload manager understands the application’s current and future needs, it can make much more optimal decisions. Metrics such as I/O bandwidth, memory allocation, storage space, CPU and GPU cycles, etc., all help the workload manager understand an application in order to optimally manage it.

Application-specific metrics, such as simulations per second, genes matched per second, etc., are more important than generic CPU and memory metrics. They best describe an application’s performance. By monitoring these application-specific metrics, the workload manager can understand how system-level variables impact application performance. For instance, an application-aware workload manager could observe that a particular application’s performance degrades substantially when it runs at the same time as a another specific application. Armed with this data, the workload manager can make sure those two conflicting applications do not run at the same time.

Big Data Awareness

Closely related to the application insight trend, we see increasing demand for big data awareness. Modern scientific computing operates on massive amounts of data, far more than ever before. Managing this flood of data is difficult; the future of workload management depends on being able to efficiently manage it.

Specifically, big data applications require I/O performance that is appropriate to the application. With multiple applications running simultaneously in a cluster, the workload manager needs to understand and satisfy the I/O needs of each application. A Big Data-aware workload manager will be able to schedule the various applications, such that their I/O demands do not conflict, ensuring that the required storage performance is available when it is needed.

Workload managers of the future will integrate directly with the storage management system. This will allow the workload manager to control the I/O allocation of each application, ensuring that no application monopolizes the I/O bandwidth. When multiple applications are contending for the same physical disk drive, the drive head thrashes between servicing each of the conflicting requests. This data contention can cause a 100-fold decrease in performance. With the workload manager directly managing the storage system, it can remove this thrashing and greatly increase application performance.

I/O performance also heavily depends on data locality. Generally speaking, today’s workload managers treat data as blobs of raw bytes, to be shuffled about with little understanding of their content. In the future, workload managers will increasingly understand the data’s structure and attributes. For example, a future workload manager could understand that a particular application uses structured data made up of small records which are randomly accessed. The workload manager could then allocate more I/O operations per second to that application than to a traditional batch-processing application, which reads sequentially from the disk. By understanding the different I/O needs of the different applications, the workload manager can exploit those factors in their scheduling decisions.

Virtualization and HPC Cloud

Lastly, we predict the continued rise of virtualization and HPC clouds. This is perhaps the biggest future trend for workload management. Historically, virtualization was anathema to high performance computing practitioners. The so-called virtualization tax, or performance penalty caused by virtualization, was too high a price to pay for high-performance workloads.

However, in recent years, this penalty has decreased to the point of being almost negligible for many applications. This trend, combined with virtualization’s greatly increased flexibility, has made virtualization a growing tool in the HPC arsenal. Virtual machines can be easily started, stopped, moved, stored, and altered, and are easier for the workload manager to schedule and control. This increased flexibility results in higher overall system utilization and greater return on investment. As a result, more and more HPC sites are adopting virtualization for a wider variety of workloads.

Taking virtualization to the next level, HPC clouds combine automated machine provisioning with workload management technologies, pay-per-use cost models, and self-service job submission. Instead of manually provisioning nodes for new compute jobs, an HPC cloud automatically provisions the appropriate environment as needed, based on the jobs submitted. These technologies work together to lower costs and increase system utilization.

HPC clouds can be public or private. Public clouds are operated by a third party who provides computing services to the public. Private clouds are operated by a particular HPC site for their own use, typically using hardware they own. Private clouds provide flexibility and cost advantages of the cloud model while still providing the security and control that many HPC users prefer.

HPC clouds increase the accessibility and flexibility of HPC systems. This brings HPC to a wider audience and lowers the overall cost of HPC. As more users take advantage of HPC, the demands become more varied. Tomorrow’s workload managers will have to cope with these realities, dealing with more users and a wider variety of workloads, both physical and virtual.

The Future Is Not Static

As Valery intimated, the future is not static. As our world changes, the trends that drive the future change with it. Application awareness, big data, and HPC clouds are changing how we do scientific computing. Workload managers must continue to evolve along with these trends.

About the Author

Chad Harrington manages Adaptive Computing‘s worldwide marketing efforts. Prior to Adaptive, Chad was a strategy consultant, helping companies increase shareholder value. Previously, he was CEO and founder of DataScaler, a database technology company which Oracle acquired in 2010. He has a history of success, holding executive, marketing, and business development roles at companies that were acquired by Symantec, McAfee, Check Point, and Oracle. As an information technology veteran, Chad speaks at industry conferences and in the media about technology trends such as cloud computing, data center architecture, security, and the future of computing. He has appeared on CNN, Marketwatch, Univision, and in other major media outlets. Chad holds a Computer Engineering degree from Brigham Young University.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them better through the miracle of video..... Team FAU/TUC is a c Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from SC17 chair Bernd Mohr, where he lauded the competition for Read more…

By Dan Olds

Activist Investor Starboard Buys 10.7% Stake in Mellanox; Sale Possible?

November 20, 2017

Starboard Value has reportedly taken a 10.7 percent stake in interconnect specialist Mellanox Technologies, and according to the Wall Street Journal, has urged the company “to improve its margins and stock and explore Read more…

By John Russell

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops (peak) machine based on IBM’s Power9 chip being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the ~200 petaflops system being built at Oak Ridge Natio Read more…

By John Russell

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them bet Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This