NVIDIA Launches Fifth-Generation CUDA

By Michael Feldman

October 15, 2012

Chipmaker NVIDIA has released CUDA 5, its latest and greatest toolkit for GPU computing. This new version adds Kepler hardware support for the supercomputing crowd as well as extra functionality to boost developer productivity. CUDA 5 is being launched just a few months ahead of the new K20 GPU, which is scheduled to be available before the end of the year.

Supporting advanced hardware features and increasing developing friendliness have always been a priority for the CUDA software engineers, but with Intel’s Xeon Phi and its built-in support in Parallel Studio expected to be released about the same time as the K20, there is an additional incentive for NVIDIA to make its programming platform more CPU-like.

The CUDA 5 release candidate has been out since spring, so GPU computing enthusiasts already have a taste of what it can do. Will Ramey, senior product manager of the NVIDIA’s GPU Computing Software group, says from the level of interest he’s seen from the early release, he’s expecting it to have a significant impact. “I believe this is going to be our most successful and widely used CUDA release ever,” he told HPCwire.

As far as the Kepler hardware goes, CUDA 5 will support the new “dynamic parallelism” and RDMA-enabled GPUDirect – two significant additions that the new Kepler chips will bring to high performance computing. For most programmers, the first feature will have a more far-reaching impact on application development. Dynamic parallelism allows the GPU to spawn its own threads, rather than having to rely on the CPU host to do it. That means a whole host of codes that used to require too much CPU-GPU interaction to make for a feasible port, can now be transitioned to the Kepler GPUs without the constraint of the communication overhead.

To make that type of code development more comfortable, NVIDIA has come up with GPU callable libraries, whose routines can be called natively from the application code running on the graphics processor. Prior to this, all the standard libraries were callable from the host side only, which made sense since prior to dynamic parallelism, the CPU was in charge of the application’s control flow. The design allows for plug-in APIs and callbacks, which enables developers to extend the capabilities of these routines even further.

NVIDIA is getting the ball rolling here by providing its own CUDA BLAS (Basic Linear Algebra Subroutines) package as a callable library. But the more significant impact is that it will allow ISVs and third-party developers to create these libraries as well, and build up a set of kernel packages, which can be shared more widely across the GPU computing ecosystem

Further, these callable libraries can be compiled separately, just as you would in a typical CPU build environment (Prior to this, all the code for a GPU app had to compiled together as monolithic source deck.) So you can build a GPU kernel from a number of source files and just link the individual objects at build time. This particular feature has no dependency on the Kepler GPUs and dynamic parallelism, so it’s applicable to the Fermi generation GPUs as well.

Because you can compile each source file individually, developers can enjoy significantly faster turnaround during intensive software development. According to Ramey, one NVIDIA customer had an application that encapsulated around 47,000 lines of code, and if just a single line was changed, it took around a minute to recompile all the sources. With this capability, the customer’s library recompilation now takes about four seconds.

The GPUDirect feature, which includes a hardware assist for RDMA, is also supported in the CUDA 5 software. It allows code that runs in the GPU to exchange data with other GPUs or any PCIe devices, without needing to coordinate it through the CPU host (although GPUDirect-aware software is also required for the PCIe device). That saves time for both the CPU and GPU.

With GPUDirect, InfiniBand host adapters and PCIe-connected sensors can take advantage of the RDMA acceleration  by talking directly with the GPU. GE already has some of this technology working with some of its embedded systems outfitted with custom sensors that stream data into the graphics chip.

The final big addition in CUDA 5 is support for Linux and Mac OS development via an integration of NVIDIA’s Nsight development environment for Linux with the open source Eclipse IDE. CUDA 4 offered a shrink-wrapped development environment for Windows via a Visual Studio integration, but Linux users were left to cobble something together themselves. With CUDA 5, compiling, debugging, performance analysis, and other dev tools are now integrated into the Eclipse interface, providing a much more user-friendly interface for Linux developers.

As with the CUDA toolkits that went before it, this fifth generation is backward compatible all the way to the first G80 CUDA chip, when NVIDIA started its GPU computing push in earnest. As such, this latest version can target over 450 million GPUs in the field today. And since CUDA is free for the taking from NVIDIA’s developer site, there’s not much of a downside to pulling in this latest upgrade.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National L Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This