NVIDIA Launches Fifth-Generation CUDA

By Michael Feldman

October 15, 2012

Chipmaker NVIDIA has released CUDA 5, its latest and greatest toolkit for GPU computing. This new version adds Kepler hardware support for the supercomputing crowd as well as extra functionality to boost developer productivity. CUDA 5 is being launched just a few months ahead of the new K20 GPU, which is scheduled to be available before the end of the year.

Supporting advanced hardware features and increasing developing friendliness have always been a priority for the CUDA software engineers, but with Intel’s Xeon Phi and its built-in support in Parallel Studio expected to be released about the same time as the K20, there is an additional incentive for NVIDIA to make its programming platform more CPU-like.

The CUDA 5 release candidate has been out since spring, so GPU computing enthusiasts already have a taste of what it can do. Will Ramey, senior product manager of the NVIDIA’s GPU Computing Software group, says from the level of interest he’s seen from the early release, he’s expecting it to have a significant impact. “I believe this is going to be our most successful and widely used CUDA release ever,” he told HPCwire.

As far as the Kepler hardware goes, CUDA 5 will support the new “dynamic parallelism” and RDMA-enabled GPUDirect – two significant additions that the new Kepler chips will bring to high performance computing. For most programmers, the first feature will have a more far-reaching impact on application development. Dynamic parallelism allows the GPU to spawn its own threads, rather than having to rely on the CPU host to do it. That means a whole host of codes that used to require too much CPU-GPU interaction to make for a feasible port, can now be transitioned to the Kepler GPUs without the constraint of the communication overhead.

To make that type of code development more comfortable, NVIDIA has come up with GPU callable libraries, whose routines can be called natively from the application code running on the graphics processor. Prior to this, all the standard libraries were callable from the host side only, which made sense since prior to dynamic parallelism, the CPU was in charge of the application’s control flow. The design allows for plug-in APIs and callbacks, which enables developers to extend the capabilities of these routines even further.

NVIDIA is getting the ball rolling here by providing its own CUDA BLAS (Basic Linear Algebra Subroutines) package as a callable library. But the more significant impact is that it will allow ISVs and third-party developers to create these libraries as well, and build up a set of kernel packages, which can be shared more widely across the GPU computing ecosystem

Further, these callable libraries can be compiled separately, just as you would in a typical CPU build environment (Prior to this, all the code for a GPU app had to compiled together as monolithic source deck.) So you can build a GPU kernel from a number of source files and just link the individual objects at build time. This particular feature has no dependency on the Kepler GPUs and dynamic parallelism, so it’s applicable to the Fermi generation GPUs as well.

Because you can compile each source file individually, developers can enjoy significantly faster turnaround during intensive software development. According to Ramey, one NVIDIA customer had an application that encapsulated around 47,000 lines of code, and if just a single line was changed, it took around a minute to recompile all the sources. With this capability, the customer’s library recompilation now takes about four seconds.

The GPUDirect feature, which includes a hardware assist for RDMA, is also supported in the CUDA 5 software. It allows code that runs in the GPU to exchange data with other GPUs or any PCIe devices, without needing to coordinate it through the CPU host (although GPUDirect-aware software is also required for the PCIe device). That saves time for both the CPU and GPU.

With GPUDirect, InfiniBand host adapters and PCIe-connected sensors can take advantage of the RDMA acceleration  by talking directly with the GPU. GE already has some of this technology working with some of its embedded systems outfitted with custom sensors that stream data into the graphics chip.

The final big addition in CUDA 5 is support for Linux and Mac OS development via an integration of NVIDIA’s Nsight development environment for Linux with the open source Eclipse IDE. CUDA 4 offered a shrink-wrapped development environment for Windows via a Visual Studio integration, but Linux users were left to cobble something together themselves. With CUDA 5, compiling, debugging, performance analysis, and other dev tools are now integrated into the Eclipse interface, providing a much more user-friendly interface for Linux developers.

As with the CUDA toolkits that went before it, this fifth generation is backward compatible all the way to the first G80 CUDA chip, when NVIDIA started its GPU computing push in earnest. As such, this latest version can target over 450 million GPUs in the field today. And since CUDA is free for the taking from NVIDIA’s developer site, there’s not much of a downside to pulling in this latest upgrade.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit and Sierra. The new AC922 server pairs two Power9 CPUs with f Read more…

By Tiffany Trader

PEZY President Arrested, Charged with Fraud

December 6, 2017

The head of Japanese supercomputing firm PEZY Computing was arrested Tuesday on suspicion of defrauding a government institution of 431 million yen (~$3.8 million). According to reports in the Japanese press, PEZY founde Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Unleash the Next Generation of HPC with Memory-Driven Compute

Today’s enterprises are faced with an ever-growing volume of data that contains immense value and intelligence for those who can properly collect, process, and store it. Read more…

Azure Debuts AMD EPYC Instances for Storage Optimized Workloads

December 5, 2017

AMD’s return to the data center received a boost today when Microsoft Azure announced introduction of instances based on AMD’s EPYC microprocessors. The new instances – Lv2-Series of Virtual Machine – use the EPY Read more…

By John Russell

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Share This