NVIDIA Launches Fifth-Generation CUDA

By Michael Feldman

October 15, 2012

Chipmaker NVIDIA has released CUDA 5, its latest and greatest toolkit for GPU computing. This new version adds Kepler hardware support for the supercomputing crowd as well as extra functionality to boost developer productivity. CUDA 5 is being launched just a few months ahead of the new K20 GPU, which is scheduled to be available before the end of the year.

Supporting advanced hardware features and increasing developing friendliness have always been a priority for the CUDA software engineers, but with Intel’s Xeon Phi and its built-in support in Parallel Studio expected to be released about the same time as the K20, there is an additional incentive for NVIDIA to make its programming platform more CPU-like.

The CUDA 5 release candidate has been out since spring, so GPU computing enthusiasts already have a taste of what it can do. Will Ramey, senior product manager of the NVIDIA’s GPU Computing Software group, says from the level of interest he’s seen from the early release, he’s expecting it to have a significant impact. “I believe this is going to be our most successful and widely used CUDA release ever,” he told HPCwire.

As far as the Kepler hardware goes, CUDA 5 will support the new “dynamic parallelism” and RDMA-enabled GPUDirect – two significant additions that the new Kepler chips will bring to high performance computing. For most programmers, the first feature will have a more far-reaching impact on application development. Dynamic parallelism allows the GPU to spawn its own threads, rather than having to rely on the CPU host to do it. That means a whole host of codes that used to require too much CPU-GPU interaction to make for a feasible port, can now be transitioned to the Kepler GPUs without the constraint of the communication overhead.

To make that type of code development more comfortable, NVIDIA has come up with GPU callable libraries, whose routines can be called natively from the application code running on the graphics processor. Prior to this, all the standard libraries were callable from the host side only, which made sense since prior to dynamic parallelism, the CPU was in charge of the application’s control flow. The design allows for plug-in APIs and callbacks, which enables developers to extend the capabilities of these routines even further.

NVIDIA is getting the ball rolling here by providing its own CUDA BLAS (Basic Linear Algebra Subroutines) package as a callable library. But the more significant impact is that it will allow ISVs and third-party developers to create these libraries as well, and build up a set of kernel packages, which can be shared more widely across the GPU computing ecosystem

Further, these callable libraries can be compiled separately, just as you would in a typical CPU build environment (Prior to this, all the code for a GPU app had to compiled together as monolithic source deck.) So you can build a GPU kernel from a number of source files and just link the individual objects at build time. This particular feature has no dependency on the Kepler GPUs and dynamic parallelism, so it’s applicable to the Fermi generation GPUs as well.

Because you can compile each source file individually, developers can enjoy significantly faster turnaround during intensive software development. According to Ramey, one NVIDIA customer had an application that encapsulated around 47,000 lines of code, and if just a single line was changed, it took around a minute to recompile all the sources. With this capability, the customer’s library recompilation now takes about four seconds.

The GPUDirect feature, which includes a hardware assist for RDMA, is also supported in the CUDA 5 software. It allows code that runs in the GPU to exchange data with other GPUs or any PCIe devices, without needing to coordinate it through the CPU host (although GPUDirect-aware software is also required for the PCIe device). That saves time for both the CPU and GPU.

With GPUDirect, InfiniBand host adapters and PCIe-connected sensors can take advantage of the RDMA acceleration  by talking directly with the GPU. GE already has some of this technology working with some of its embedded systems outfitted with custom sensors that stream data into the graphics chip.

The final big addition in CUDA 5 is support for Linux and Mac OS development via an integration of NVIDIA’s Nsight development environment for Linux with the open source Eclipse IDE. CUDA 4 offered a shrink-wrapped development environment for Windows via a Visual Studio integration, but Linux users were left to cobble something together themselves. With CUDA 5, compiling, debugging, performance analysis, and other dev tools are now integrated into the Eclipse interface, providing a much more user-friendly interface for Linux developers.

As with the CUDA toolkits that went before it, this fifth generation is backward compatible all the way to the first G80 CUDA chip, when NVIDIA started its GPU computing push in earnest. As such, this latest version can target over 450 million GPUs in the field today. And since CUDA is free for the taking from NVIDIA’s developer site, there’s not much of a downside to pulling in this latest upgrade.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This