OCF Supersizes HPC Service

By Tiffany Trader

October 16, 2012

UK-based HPC systems integrator OCF plc just significantly expanded its pay-as-you-go supercomputing service, enCORE. The on-demand system first launched in late 2010 to bring additional computing capacity to the UK’s small-to-medium-sized business community. What started out as a small pilot project has developed into a full-fledged, 8,000-core HPC service.

Lola Cars

Using enCORE – racecar CFD simulation superimposed onto real Le Mans image: Picture courtesy of Lola Cars

Jerry Dixon, the HPC on Demand business development manager at OCF, joined the company just before the initial deployment. He recalls that at the time, the company was aware of the huge potential for a service of this kind, but did not have the capacity required to launch such an undertaking – at least not by themselves. However, via a partnership with the Science and Technology Facilities Council, a UK research council operation, the OCF came to an exclusive arrangement to sell the excess capacity of the Daresbury Laboratory’s IBM iDataplex cluster on essentially a revenue share basis.

The initial cluster was quite small, even by 2010 standards: a 2.5 teraflop System x iDataPlex server cluster. The OCF had a service-level agreement that allowed it to use half of the cycles. Since then, the OCF has been running essentially a pilot service, enabling them to fine-tune the service-level agreement and get a better understanding of what customers are looking for. While the focus has been on small-to-medium sized businesses in the UK, there are also a couple overseas customers.

This month, as part of a newly signed agreement between OCF and the Science and Technology Facilities Council’s Hartree Centre, the service is ramping up to 8,000 cores. It draws its power from a new IBM System x iDataPlex cluster named Blue Wonder, which was installed and configured by OCF in partnership with IBM. With 8,192 Intel Xeon E5 processor cores interconnected with FDR InfiniBand and plugged into a high-speed GPFS file system, the machine is capable of 206.3 teraflops (Linpack). Its 48 TB shared memory capacity makes it the largest shared memory cluster in the UK.

Each of the 512 nodes sports Intel SandyBridge 8-core CPUs with either 36Gb or 128Gb RAM. This is true HPC-as-a-Service; the compute nodes are not virtualized. Service users can also access 48 GPU nodes outfitted with NVIDIA Tesla 2090 GPUs.

The cluster operates with Platform HPC tools, so for customers using Platform LSF, it’s easy to switch their compute jobs to a remote cluster. Users who rely on Sun Grid Engine or other scheduling software need a separate account with OCF. Dixon says that job submissions have gone smoothly, but that OCF is still looking to develop different user interfaces to make it easier to use the enCORE service in a more automated way, over the Internet. Customers can use various open source applications available on enCORE, or load their own apps.

With this additional capacity, OCF and enCORE will be able to satisfy the type of requirements of larger organizations in addition to their current customer base of small and mid-size companies. Dixon recounts the meaningful business benefits enabled by the endeavor. Some customers have no HPC infrastructure available to them in-house and in order to run models and simulations successfully they need to access an HPC cluster. Other customers may own HPC resources but from time to time have peaks in demand or challenging project schedules or have workloads that require significantly more capacity than they have access to. Other clients who own systems outright are pushing up against capacity, datacenter and power limitations and use the service as way to minimize the gap.

One success story in particular stands out in Dixon’s mind: a customer that had the opportunity to bid for a contract to perform wind farm simulations, but did not have the necessary computing power necessary to carry out the work. By working with OCF and using the enCORE service, they were able to put in a successful bid and delivered the work on time and on budget.

While enCORE is officially a public-private partnership – the first one of its kind in the UK – from the customer perspective, this is a commercial service. The entire customer engagement, from sales and marketing right through to service delivery is with OCF. So the customer does not have any exposure whatsoever to the partner institutions – all technical support, requirements or requests come in to the OCF service desk.

But this is still a collaboration, and the cluster operates based on service agreements. Dixon characterized the arrangement as a flexible arrangement, with OCF having access to 8,000 of the 8,192 available cores. The distribution of resources toward commercial endeavors is intentional.

The Hartree Center – where the cluster resides – is a collaboration between the STFC, IBM and other partners, including OCF. The center, launched in 2011 with a £37.5 government investment, has a mandate to help UK businesses harness the power of high-performance computing in order to better compete on the global playing field. Dixon explains that historically the Germans and the French have invested significantly more federal dollars into HPC than Britain has and that’s one reason this project is so important.

“The objective of the Hartree Center,” says Dixon, “is to help customers adopt high-performance computing, optimize codes and build applications in a collaborative framework to help them become more innovative.” By using the latest modeling and simulation technologies, vendors can optimize their research and development process and get products to market more quickly.

Running codes on HPC systems is rarely a simple task, and as part of their services, OCF provides access to HPC experts. They help users resolve issues of compiling code and installing modules. “I think that’s an important distinction from users that try to run HPC simulations on public clouds, like Amazon EC2,” says Dixon, “where you wouldn’t get that level or any level of support of that type. We’ve got a number of notes of thanks from our customers for the support we’ve provided which has allowed them to get up and running very quickly.”

In talking with Dixon, one gets the sense that there is quite the ecosystem of users and potential users who have a need for this kind of HPC capacity. “The range of industries that we’ll be supporting is going to expand quite significantly along with the growth of the cluster,” he says.

Current and would-be customers tend to have a mix of engineering and geoscience codes. The list of possible use cases is quite varied and includes semiconductor design, hydrodynamics, modeling high-speed trains (two trains passing in a tunnel), insurance risk modeling based on natural disasters, financial modeling, and more. BHR, Engys, Actiflow, HR Wallingford, Lola Cars and Renuda are just some of their customers.

Dr. David Kelsall, senior consultant at fluid engineering consultancy, BHR Group, shared his thoughts on using the service as a way to increase user confidence in digital tools. BHR group has operated mostly with physical models and under new leadership is increasing its use of computer modeling and simulation technologies. Kelsall points to a customer who, through an outside agency, has done computer modeling for a massive pumping system and now wants to ensure the validity of the results, so they turned to BHR to create a physical model and to help them get a feel for the pros and cons of each approach.

Kelsall sees other companies straddling the physical/digital divide and views the cloud service as a way to obtain the necessary compute capacity without making a huge capital investment. Kelsall admits that it’s often more difficult for SMEs to access HPC technology, but he says “organizations like ours can provide a bridge between what they want and what’s available.”

Keeping data in the UK was also a sticking point for BHR. Kelsall says that a UK-based service provider is helping them meet data privacy mandates.

OCF, a small company of about 26 employees, has established a significant customer base and a solid reputation over the ten yeas its been in business. While based in the UK, OCF is well-known throughout the HPC community. They are an IBM Premier partner, and an accredited IBM Cloud Service provider. Customers find out about OCF via the IBM organization and community networking as well as through more traditional channels like marketing, trade press, and direct sales activities.

The service is charged on a per-core hour basis, and the website lists “a small annual fee of £350.” Users pay for storage above a half a TB. Dixon says the nice thing about the simple charging model is that it makes it easy to budget and control spend. The per-core charge varies depending on the level of usage, so a heavy user will get a discounted price as per economies of scale.

The revamped service is going through some final configuration and testing, but should be up and running within next week or two.

“We expect to see all sorts of workloads,” says Dixon. “Some customers will use it very regularly because they don’t have their own infrastructure and others will go to the other extreme, and use it only sparingly, and everything in between. One user was a heavy user at first and since then, they’ve only used it several times. But this uneven usage is actually good because it opens up the system for other users and the overall demand levels out.”

This brief (under 5 minute) video shares further details about the Science and Technology Facilities Council at Sci-Tech Daresbury, home of Blue Wonder, the workhorse behind the enCORE service.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This