OCF Supersizes HPC Service

By Tiffany Trader

October 16, 2012

UK-based HPC systems integrator OCF plc just significantly expanded its pay-as-you-go supercomputing service, enCORE. The on-demand system first launched in late 2010 to bring additional computing capacity to the UK’s small-to-medium-sized business community. What started out as a small pilot project has developed into a full-fledged, 8,000-core HPC service.

Lola Cars

Using enCORE – racecar CFD simulation superimposed onto real Le Mans image: Picture courtesy of Lola Cars

Jerry Dixon, the HPC on Demand business development manager at OCF, joined the company just before the initial deployment. He recalls that at the time, the company was aware of the huge potential for a service of this kind, but did not have the capacity required to launch such an undertaking – at least not by themselves. However, via a partnership with the Science and Technology Facilities Council, a UK research council operation, the OCF came to an exclusive arrangement to sell the excess capacity of the Daresbury Laboratory’s IBM iDataplex cluster on essentially a revenue share basis.

The initial cluster was quite small, even by 2010 standards: a 2.5 teraflop System x iDataPlex server cluster. The OCF had a service-level agreement that allowed it to use half of the cycles. Since then, the OCF has been running essentially a pilot service, enabling them to fine-tune the service-level agreement and get a better understanding of what customers are looking for. While the focus has been on small-to-medium sized businesses in the UK, there are also a couple overseas customers.

This month, as part of a newly signed agreement between OCF and the Science and Technology Facilities Council’s Hartree Centre, the service is ramping up to 8,000 cores. It draws its power from a new IBM System x iDataPlex cluster named Blue Wonder, which was installed and configured by OCF in partnership with IBM. With 8,192 Intel Xeon E5 processor cores interconnected with FDR InfiniBand and plugged into a high-speed GPFS file system, the machine is capable of 206.3 teraflops (Linpack). Its 48 TB shared memory capacity makes it the largest shared memory cluster in the UK.

Each of the 512 nodes sports Intel SandyBridge 8-core CPUs with either 36Gb or 128Gb RAM. This is true HPC-as-a-Service; the compute nodes are not virtualized. Service users can also access 48 GPU nodes outfitted with NVIDIA Tesla 2090 GPUs.

The cluster operates with Platform HPC tools, so for customers using Platform LSF, it’s easy to switch their compute jobs to a remote cluster. Users who rely on Sun Grid Engine or other scheduling software need a separate account with OCF. Dixon says that job submissions have gone smoothly, but that OCF is still looking to develop different user interfaces to make it easier to use the enCORE service in a more automated way, over the Internet. Customers can use various open source applications available on enCORE, or load their own apps.

With this additional capacity, OCF and enCORE will be able to satisfy the type of requirements of larger organizations in addition to their current customer base of small and mid-size companies. Dixon recounts the meaningful business benefits enabled by the endeavor. Some customers have no HPC infrastructure available to them in-house and in order to run models and simulations successfully they need to access an HPC cluster. Other customers may own HPC resources but from time to time have peaks in demand or challenging project schedules or have workloads that require significantly more capacity than they have access to. Other clients who own systems outright are pushing up against capacity, datacenter and power limitations and use the service as way to minimize the gap.

One success story in particular stands out in Dixon’s mind: a customer that had the opportunity to bid for a contract to perform wind farm simulations, but did not have the necessary computing power necessary to carry out the work. By working with OCF and using the enCORE service, they were able to put in a successful bid and delivered the work on time and on budget.

While enCORE is officially a public-private partnership – the first one of its kind in the UK – from the customer perspective, this is a commercial service. The entire customer engagement, from sales and marketing right through to service delivery is with OCF. So the customer does not have any exposure whatsoever to the partner institutions – all technical support, requirements or requests come in to the OCF service desk.

But this is still a collaboration, and the cluster operates based on service agreements. Dixon characterized the arrangement as a flexible arrangement, with OCF having access to 8,000 of the 8,192 available cores. The distribution of resources toward commercial endeavors is intentional.

The Hartree Center – where the cluster resides – is a collaboration between the STFC, IBM and other partners, including OCF. The center, launched in 2011 with a £37.5 government investment, has a mandate to help UK businesses harness the power of high-performance computing in order to better compete on the global playing field. Dixon explains that historically the Germans and the French have invested significantly more federal dollars into HPC than Britain has and that’s one reason this project is so important.

“The objective of the Hartree Center,” says Dixon, “is to help customers adopt high-performance computing, optimize codes and build applications in a collaborative framework to help them become more innovative.” By using the latest modeling and simulation technologies, vendors can optimize their research and development process and get products to market more quickly.

Running codes on HPC systems is rarely a simple task, and as part of their services, OCF provides access to HPC experts. They help users resolve issues of compiling code and installing modules. “I think that’s an important distinction from users that try to run HPC simulations on public clouds, like Amazon EC2,” says Dixon, “where you wouldn’t get that level or any level of support of that type. We’ve got a number of notes of thanks from our customers for the support we’ve provided which has allowed them to get up and running very quickly.”

In talking with Dixon, one gets the sense that there is quite the ecosystem of users and potential users who have a need for this kind of HPC capacity. “The range of industries that we’ll be supporting is going to expand quite significantly along with the growth of the cluster,” he says.

Current and would-be customers tend to have a mix of engineering and geoscience codes. The list of possible use cases is quite varied and includes semiconductor design, hydrodynamics, modeling high-speed trains (two trains passing in a tunnel), insurance risk modeling based on natural disasters, financial modeling, and more. BHR, Engys, Actiflow, HR Wallingford, Lola Cars and Renuda are just some of their customers.

Dr. David Kelsall, senior consultant at fluid engineering consultancy, BHR Group, shared his thoughts on using the service as a way to increase user confidence in digital tools. BHR group has operated mostly with physical models and under new leadership is increasing its use of computer modeling and simulation technologies. Kelsall points to a customer who, through an outside agency, has done computer modeling for a massive pumping system and now wants to ensure the validity of the results, so they turned to BHR to create a physical model and to help them get a feel for the pros and cons of each approach.

Kelsall sees other companies straddling the physical/digital divide and views the cloud service as a way to obtain the necessary compute capacity without making a huge capital investment. Kelsall admits that it’s often more difficult for SMEs to access HPC technology, but he says “organizations like ours can provide a bridge between what they want and what’s available.”

Keeping data in the UK was also a sticking point for BHR. Kelsall says that a UK-based service provider is helping them meet data privacy mandates.

OCF, a small company of about 26 employees, has established a significant customer base and a solid reputation over the ten yeas its been in business. While based in the UK, OCF is well-known throughout the HPC community. They are an IBM Premier partner, and an accredited IBM Cloud Service provider. Customers find out about OCF via the IBM organization and community networking as well as through more traditional channels like marketing, trade press, and direct sales activities.

The service is charged on a per-core hour basis, and the website lists “a small annual fee of £350.” Users pay for storage above a half a TB. Dixon says the nice thing about the simple charging model is that it makes it easy to budget and control spend. The per-core charge varies depending on the level of usage, so a heavy user will get a discounted price as per economies of scale.

The revamped service is going through some final configuration and testing, but should be up and running within next week or two.

“We expect to see all sorts of workloads,” says Dixon. “Some customers will use it very regularly because they don’t have their own infrastructure and others will go to the other extreme, and use it only sparingly, and everything in between. One user was a heavy user at first and since then, they’ve only used it several times. But this uneven usage is actually good because it opens up the system for other users and the overall demand levels out.”

This brief (under 5 minute) video shares further details about the Science and Technology Facilities Council at Sci-Tech Daresbury, home of Blue Wonder, the workhorse behind the enCORE service.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This