Designing HPC Systems: OPS Versus FLOPS

By Steve Wallach

October 17, 2012

This is the first of several articles discussing the various technologies and design criteria used for HPC systems. Building computer systems of any sort, but especially very large systems, is somewhat akin to the process an apartment real-estate developer goes through. The developer has to have an idea of what the final product will look like, its compelling features, and the go-to-market strategy.

Do they build each unit the same, or provide some level of heterogeneity, different floor plans. Do they construct one monolithic building or a village with walkways? What level of customization, if any, should be permitted?

In contemporary HPC design we face similar decision-making. Do we build tightly coupled systems, emphasizing floating point and internode bandwidth, or do we build nodes with extensive multi-threading that can randomly reference data sets? In either case, we always need to scale out as much as possible.

And finally we have the marketing picture of the system under a beautiful clouded-blue sky with mountains or lake in the background. Since we intend to market to international buyers, we have to figure out which languages to support on our marketing web site. Almost forgot: do we sell these systems outright or base our financial model on a timeshare condo arrangement?

Is programming an HPC system equivalent to the above? For example, there’s a choice to be made between extending existing languages or creating new ones. Are the languages domain specific unique to a particular application space, like HTML, Verilog or SQL; or do we add new features to existing languages, like global address space primitives, such as UPC?

For this initial piece, we will discuss these design issues in the context of “big data.” It’s seems reasonable to suggest that building an exaOPS system for big data systems is different from building an exaFLOPS machine for technical applications. But is it? While clearly the applications are different, that doesn’t necessarily mean the underlying architecture has to be as well.
 
The following table compares some of the characteristics of OPS versus FLOPS at the node level.

Examining the attributes listed above would initially lead one to the observation that there are substantive differences between the two. However, looking at a hardware logic design reveals a somewhat different perspective. Both systems need as much physical memory as can be directly supported, subject to cooling and power constraints. Both systems also would like as much real memory bandwidth as possible.

For both systems, the logic used by the ALU’s tends to be minimal. Thus the amount of actual space used for a custom design floating point ALU is relatively small. This is especially true when one considers that 64×64 integer multiplication is an often-used primitive address calculation in big data and HPC applications. In many cases, integer multiplication is part of the design of an IEEE floating point ALU.

If we dig a little deeper, we come to the conclusion that the major gating item is sustained memory bandwidth and latency. We have to determine how long it takes to access an operand and how many can be accessed at once, Given a specific memory architecture, we need to figure out the best machine state model for computation. Is it compiler managed-registers using the RAM that would normally be associated with a L3 cache, or keep scaling a floor plan similar to the one below?

The overriding issue is efficiency. We can argue incessantly about this. As the datasets get bigger, the locality of references — temporal and spatial — decreases and the randomness of references increase. What are the solutions?

In HPC classic, programmers (and some compilers) generate code that explicitly blocks the data sets into cache, typically the L2 private or L3 shared cache. This technique tends to work quite well for traditional HPC applications. Its major deficiencies are the extra coding work and the lack of performance portability among different cache architectures.

Several techniques, especially the ones supported by the auto-tune capabilities of LAPACK, work quite well for many applications that manipulate dense matrices. Consequently, the memory systems are block-oriented and support is inherent in the memory controllers of all contemporary microprocessors.

For big data, however, accesses are relatively random, and this block approach tends not to work. As a function of the data structure — a tree, a graph, a string — different approaches are used to make memory references more efficient.

Additionally, for big data work, performance is measured in throughput of transactions or queries per second and not FLOPS. Coincidentally, perhaps, the optimal memory structure is HPC classic, meaning, highly interleaved, word-scatter/gather-oriented main memory. This was the approach used in Cray, Convex, Fujitsu, NEC, and Hitachi machines.

There is another interesting dynamic of cache- or register-based internal processor storage: power consumption and design complexity. While not immediately obvious, for a given amount of user-visible machine state, a cache has additional transistors for maintaining its transparency, which translates into additional power consumption.

For example, there is storage for tags and logic for the comparison of generated address tags with stored cache tags. There is additional logic required for the control of the cache. It is difficult to quantify the incremental power required, but it is incremental.

Another aspect of cache versus internal state, especially for big data, is the reference pattern. Random references have poor cache hit characteristics. But if the data can be blocked, then the hit rate increases substantially. The efficiency of managing large amounts of internal machine is proportional to the thread architecture.

We have to determine if we have lots of threads with reasonable size register sets, or a smaller number of threads, like a vector machine, with a large amount of machine state. The latter approach places a burden on physical memory design.
 
Attaching private L1 and L2 caches per core is relatively straightforward and scales as the number of cores increases. A shared L3 cache increases the complexity of the internal design. We need to trade off bandwidth, simultaneous accesses, and latency and cache coherency. The question that needs to asked is if we are better off using internal static RAM for compiler-managed data registers per core/thread.

Obviously both memory structures have their own cost/performance tradeoffs. A cache-based memory system tends to be more cost-effective, but of lower performance. The design of the memory subsystem is easier, given that off-the-shelf DRAM DIMMS are commercially available.

The HPC classic architecture results in higher performance and is applicable to a wider range of applications. The available memory bandwidth is more effectively used, and operands are only loaded and stored when needed; there is no block size to deal with.

In summary, this article discusses the single-node processor architecture for data-centric and conventional high performance computing. There are many similarities and many differences. The major divergence is in the main memory reference model and interface. Data caches were created decades ago, but it’s not clear if that this architecture is still optimal. Will Hybrid Memory Cube (HMC) and Processor in Memory (PIM) architectures make tradeoffs for newer designs that move away from the traditional memory designs? Time will tell.

The next article will discuss the design approaches for global interconnects.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This