Designing HPC Systems: OPS Versus FLOPS

By Steve Wallach

October 17, 2012

This is the first of several articles discussing the various technologies and design criteria used for HPC systems. Building computer systems of any sort, but especially very large systems, is somewhat akin to the process an apartment real-estate developer goes through. The developer has to have an idea of what the final product will look like, its compelling features, and the go-to-market strategy.

Do they build each unit the same, or provide some level of heterogeneity, different floor plans. Do they construct one monolithic building or a village with walkways? What level of customization, if any, should be permitted?

In contemporary HPC design we face similar decision-making. Do we build tightly coupled systems, emphasizing floating point and internode bandwidth, or do we build nodes with extensive multi-threading that can randomly reference data sets? In either case, we always need to scale out as much as possible.

And finally we have the marketing picture of the system under a beautiful clouded-blue sky with mountains or lake in the background. Since we intend to market to international buyers, we have to figure out which languages to support on our marketing web site. Almost forgot: do we sell these systems outright or base our financial model on a timeshare condo arrangement?

Is programming an HPC system equivalent to the above? For example, there’s a choice to be made between extending existing languages or creating new ones. Are the languages domain specific unique to a particular application space, like HTML, Verilog or SQL; or do we add new features to existing languages, like global address space primitives, such as UPC?

For this initial piece, we will discuss these design issues in the context of “big data.” It’s seems reasonable to suggest that building an exaOPS system for big data systems is different from building an exaFLOPS machine for technical applications. But is it? While clearly the applications are different, that doesn’t necessarily mean the underlying architecture has to be as well.
 
The following table compares some of the characteristics of OPS versus FLOPS at the node level.

Examining the attributes listed above would initially lead one to the observation that there are substantive differences between the two. However, looking at a hardware logic design reveals a somewhat different perspective. Both systems need as much physical memory as can be directly supported, subject to cooling and power constraints. Both systems also would like as much real memory bandwidth as possible.

For both systems, the logic used by the ALU’s tends to be minimal. Thus the amount of actual space used for a custom design floating point ALU is relatively small. This is especially true when one considers that 64×64 integer multiplication is an often-used primitive address calculation in big data and HPC applications. In many cases, integer multiplication is part of the design of an IEEE floating point ALU.

If we dig a little deeper, we come to the conclusion that the major gating item is sustained memory bandwidth and latency. We have to determine how long it takes to access an operand and how many can be accessed at once, Given a specific memory architecture, we need to figure out the best machine state model for computation. Is it compiler managed-registers using the RAM that would normally be associated with a L3 cache, or keep scaling a floor plan similar to the one below?

The overriding issue is efficiency. We can argue incessantly about this. As the datasets get bigger, the locality of references — temporal and spatial — decreases and the randomness of references increase. What are the solutions?

In HPC classic, programmers (and some compilers) generate code that explicitly blocks the data sets into cache, typically the L2 private or L3 shared cache. This technique tends to work quite well for traditional HPC applications. Its major deficiencies are the extra coding work and the lack of performance portability among different cache architectures.

Several techniques, especially the ones supported by the auto-tune capabilities of LAPACK, work quite well for many applications that manipulate dense matrices. Consequently, the memory systems are block-oriented and support is inherent in the memory controllers of all contemporary microprocessors.

For big data, however, accesses are relatively random, and this block approach tends not to work. As a function of the data structure — a tree, a graph, a string — different approaches are used to make memory references more efficient.

Additionally, for big data work, performance is measured in throughput of transactions or queries per second and not FLOPS. Coincidentally, perhaps, the optimal memory structure is HPC classic, meaning, highly interleaved, word-scatter/gather-oriented main memory. This was the approach used in Cray, Convex, Fujitsu, NEC, and Hitachi machines.

There is another interesting dynamic of cache- or register-based internal processor storage: power consumption and design complexity. While not immediately obvious, for a given amount of user-visible machine state, a cache has additional transistors for maintaining its transparency, which translates into additional power consumption.

For example, there is storage for tags and logic for the comparison of generated address tags with stored cache tags. There is additional logic required for the control of the cache. It is difficult to quantify the incremental power required, but it is incremental.

Another aspect of cache versus internal state, especially for big data, is the reference pattern. Random references have poor cache hit characteristics. But if the data can be blocked, then the hit rate increases substantially. The efficiency of managing large amounts of internal machine is proportional to the thread architecture.

We have to determine if we have lots of threads with reasonable size register sets, or a smaller number of threads, like a vector machine, with a large amount of machine state. The latter approach places a burden on physical memory design.
 
Attaching private L1 and L2 caches per core is relatively straightforward and scales as the number of cores increases. A shared L3 cache increases the complexity of the internal design. We need to trade off bandwidth, simultaneous accesses, and latency and cache coherency. The question that needs to asked is if we are better off using internal static RAM for compiler-managed data registers per core/thread.

Obviously both memory structures have their own cost/performance tradeoffs. A cache-based memory system tends to be more cost-effective, but of lower performance. The design of the memory subsystem is easier, given that off-the-shelf DRAM DIMMS are commercially available.

The HPC classic architecture results in higher performance and is applicable to a wider range of applications. The available memory bandwidth is more effectively used, and operands are only loaded and stored when needed; there is no block size to deal with.

In summary, this article discusses the single-node processor architecture for data-centric and conventional high performance computing. There are many similarities and many differences. The major divergence is in the main memory reference model and interface. Data caches were created decades ago, but it’s not clear if that this architecture is still optimal. Will Hybrid Memory Cube (HMC) and Processor in Memory (PIM) architectures make tradeoffs for newer designs that move away from the traditional memory designs? Time will tell.

The next article will discuss the design approaches for global interconnects.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This