Penguin Joins Microserver ARMs Race

By Michael Feldman

October 18, 2012

Penguin Computing has launched its first ARM-based server platform. Known as the UDX1, the Penguin box is based on Calxeda’s latest ARM server chip, and is aimed at cloud computing, Web hosting, and, especially, data analytics – UD stands for Ultimate Data. The move puts Penguin into the front ranks of computer makers who are testing the waters for the burgeoning microserver market.

Although Penguin is best known for its HPC cluster offerings, it also sells into the enterprise space, from which it currently collects half its revenue. With established customers like Digg and Yelp, the company is looking to expand its footprint even further in the commercial arena. One of the ways it intends to do that is via the “big data” market, an application domain that spans genomic sequencing, risk analysis for stock portfolios, retail analytics and everything in between. Conveniently that encompasses the company’s HPC and enterprise customer bases.


The idea behind the UDX1 is to offer a less costly and more energy-efficient platform for these data-intensive applications. In general, x86 Xeon and Opteron servers offer more computational power than needed for applications that tend to be I/O bound. Therefore, rejiggering the compute-I/O balance by cutting back on thread/core performance can, at least in theory, offer a much more efficient solution.

That’s the premise of the microserver architecture, which uses less performant, but much lower power processors, such as ARM SoCs and low-power Intel Xeons and Atoms, to drive these throughput applications. In Penguin’s case, the UDX1 uses Calxeda’s latest EnergyCore ECX-1000 ARM server SoC, a quad-core chip that tops out at 5 watts. Each 4U enclosure houses up to 12 Calxeda modules, each holding four of those SoCs.

Note that the current crop of Calxeda server chips are based on 32-bit ARM, so there is that annoying limitation of a 4 GB memory reach. But for Hadoop-type workloads that can slice up datasets into bite-sized chunks, and scale out appropriately, this is a manageable problem.

Since each ARM chip comprises a complete server node, the UDX1 chassis offers 48 servers, in aggregate, (so 192 cores). Each node can hook into 4GB of DRAM and 36 1GB storage drives. Network switching is provided in the form of an on-chip network fabric supporting 10GbE connectivity between nodes, obviating the need for an external switch. In addition to on-chip Ethernet, the SoC includes integrated controllers for memory, PCIe, and SATA drives, as well as system management logic.

Since each of the servers runs 5 watts at full load, the whole chassis draws only 240 watts. Not bad for 192 cores. Obviously these are not Xeon cores; the ECX-1000 chip tops out at 1.4 GHz, which is less than half the speed of a top-end x86 server CPU. But in its intended space of divide-and-conquer-computing, there are a lot less wasted cycles waiting for I/O to catch up. At just a little over a watt per thread, energy-efficiency is an order of magnitude better than conventional server platforms.

According to Arend Dittmer, Penguin’s director of product marketing, a fully-populated UXD1 chassis will run about $30-35K. He says they already have a trio of orders for the new platform: one from a financial services firm, and the other two from national labs – all for data analytics work. At this point, the systems are being targeted for experimentation, rather than production, as customers kick the tires to see how well the Penguin box works under their analytics loads.

While the volume market for such microservers is going to be in the commercial space, Dittmer sees such systems filling a comfortable niche in HPC shops. He says, for mainstream science computation, where FLOPS are king, this is not the right platform (and doesn’t try to be). But since there is a finite amount of power and real estate in a datacenter, it makes sense to offload the data analytics work of science to more efficient hardware like the UXD1.

Penguin is not the only server maker utilizing Calxeda silicon. UK-based Boston Limited offers a very similar system to the UXD1, which they call Viridis. The Boston box is a 2U chassis that houses up to 48 Calxeda nodes and is aimed at essentially the same application space that Penguin is targeting. According to David Power, Boston’s Head of HPC, they have a 36-bay, 4U platform in the works, based on the same Calxeda SoCs.

Both vendors are already looking ahead to Calxeda’s plans for its 64-bit ARM SoC, which the company has code-named “Lago.” No one has committed to a date, but it’s reasonable to think that these chips should start to appear in the 2014 timeframe, with server implementations to follow shortly thereafter.

By that time, Penguin and Boston should have plenty of company. HP has been flirting with Calxeda for some time with its Project Moonshot development platform, but opted to go with Intel Atom CPUs for its initial microserver line. Dell has been dipping its toes into the microserver space as well, but gave the nod to Marvell’s quad-core Armada XP 78460 chip. IBM has yet to choose sides, but if these initial microserver platforms start to gain traction, you can bet Big Blue will figure out a way to get into the game.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This