Penguin Joins Microserver ARMs Race

By Michael Feldman

October 18, 2012

Penguin Computing has launched its first ARM-based server platform. Known as the UDX1, the Penguin box is based on Calxeda’s latest ARM server chip, and is aimed at cloud computing, Web hosting, and, especially, data analytics – UD stands for Ultimate Data. The move puts Penguin into the front ranks of computer makers who are testing the waters for the burgeoning microserver market.

Although Penguin is best known for its HPC cluster offerings, it also sells into the enterprise space, from which it currently collects half its revenue. With established customers like Digg and Yelp, the company is looking to expand its footprint even further in the commercial arena. One of the ways it intends to do that is via the “big data” market, an application domain that spans genomic sequencing, risk analysis for stock portfolios, retail analytics and everything in between. Conveniently that encompasses the company’s HPC and enterprise customer bases.


The idea behind the UDX1 is to offer a less costly and more energy-efficient platform for these data-intensive applications. In general, x86 Xeon and Opteron servers offer more computational power than needed for applications that tend to be I/O bound. Therefore, rejiggering the compute-I/O balance by cutting back on thread/core performance can, at least in theory, offer a much more efficient solution.

That’s the premise of the microserver architecture, which uses less performant, but much lower power processors, such as ARM SoCs and low-power Intel Xeons and Atoms, to drive these throughput applications. In Penguin’s case, the UDX1 uses Calxeda’s latest EnergyCore ECX-1000 ARM server SoC, a quad-core chip that tops out at 5 watts. Each 4U enclosure houses up to 12 Calxeda modules, each holding four of those SoCs.

Note that the current crop of Calxeda server chips are based on 32-bit ARM, so there is that annoying limitation of a 4 GB memory reach. But for Hadoop-type workloads that can slice up datasets into bite-sized chunks, and scale out appropriately, this is a manageable problem.

Since each ARM chip comprises a complete server node, the UDX1 chassis offers 48 servers, in aggregate, (so 192 cores). Each node can hook into 4GB of DRAM and 36 1GB storage drives. Network switching is provided in the form of an on-chip network fabric supporting 10GbE connectivity between nodes, obviating the need for an external switch. In addition to on-chip Ethernet, the SoC includes integrated controllers for memory, PCIe, and SATA drives, as well as system management logic.

Since each of the servers runs 5 watts at full load, the whole chassis draws only 240 watts. Not bad for 192 cores. Obviously these are not Xeon cores; the ECX-1000 chip tops out at 1.4 GHz, which is less than half the speed of a top-end x86 server CPU. But in its intended space of divide-and-conquer-computing, there are a lot less wasted cycles waiting for I/O to catch up. At just a little over a watt per thread, energy-efficiency is an order of magnitude better than conventional server platforms.

According to Arend Dittmer, Penguin’s director of product marketing, a fully-populated UXD1 chassis will run about $30-35K. He says they already have a trio of orders for the new platform: one from a financial services firm, and the other two from national labs – all for data analytics work. At this point, the systems are being targeted for experimentation, rather than production, as customers kick the tires to see how well the Penguin box works under their analytics loads.

While the volume market for such microservers is going to be in the commercial space, Dittmer sees such systems filling a comfortable niche in HPC shops. He says, for mainstream science computation, where FLOPS are king, this is not the right platform (and doesn’t try to be). But since there is a finite amount of power and real estate in a datacenter, it makes sense to offload the data analytics work of science to more efficient hardware like the UXD1.

Penguin is not the only server maker utilizing Calxeda silicon. UK-based Boston Limited offers a very similar system to the UXD1, which they call Viridis. The Boston box is a 2U chassis that houses up to 48 Calxeda nodes and is aimed at essentially the same application space that Penguin is targeting. According to David Power, Boston’s Head of HPC, they have a 36-bay, 4U platform in the works, based on the same Calxeda SoCs.

Both vendors are already looking ahead to Calxeda’s plans for its 64-bit ARM SoC, which the company has code-named “Lago.” No one has committed to a date, but it’s reasonable to think that these chips should start to appear in the 2014 timeframe, with server implementations to follow shortly thereafter.

By that time, Penguin and Boston should have plenty of company. HP has been flirting with Calxeda for some time with its Project Moonshot development platform, but opted to go with Intel Atom CPUs for its initial microserver line. Dell has been dipping its toes into the microserver space as well, but gave the nod to Marvell’s quad-core Armada XP 78460 chip. IBM has yet to choose sides, but if these initial microserver platforms start to gain traction, you can bet Big Blue will figure out a way to get into the game.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This