Penguin Joins Microserver ARMs Race

By Michael Feldman

October 18, 2012

Penguin Computing has launched its first ARM-based server platform. Known as the UDX1, the Penguin box is based on Calxeda’s latest ARM server chip, and is aimed at cloud computing, Web hosting, and, especially, data analytics – UD stands for Ultimate Data. The move puts Penguin into the front ranks of computer makers who are testing the waters for the burgeoning microserver market.

Although Penguin is best known for its HPC cluster offerings, it also sells into the enterprise space, from which it currently collects half its revenue. With established customers like Digg and Yelp, the company is looking to expand its footprint even further in the commercial arena. One of the ways it intends to do that is via the “big data” market, an application domain that spans genomic sequencing, risk analysis for stock portfolios, retail analytics and everything in between. Conveniently that encompasses the company’s HPC and enterprise customer bases.


The idea behind the UDX1 is to offer a less costly and more energy-efficient platform for these data-intensive applications. In general, x86 Xeon and Opteron servers offer more computational power than needed for applications that tend to be I/O bound. Therefore, rejiggering the compute-I/O balance by cutting back on thread/core performance can, at least in theory, offer a much more efficient solution.

That’s the premise of the microserver architecture, which uses less performant, but much lower power processors, such as ARM SoCs and low-power Intel Xeons and Atoms, to drive these throughput applications. In Penguin’s case, the UDX1 uses Calxeda’s latest EnergyCore ECX-1000 ARM server SoC, a quad-core chip that tops out at 5 watts. Each 4U enclosure houses up to 12 Calxeda modules, each holding four of those SoCs.

Note that the current crop of Calxeda server chips are based on 32-bit ARM, so there is that annoying limitation of a 4 GB memory reach. But for Hadoop-type workloads that can slice up datasets into bite-sized chunks, and scale out appropriately, this is a manageable problem.

Since each ARM chip comprises a complete server node, the UDX1 chassis offers 48 servers, in aggregate, (so 192 cores). Each node can hook into 4GB of DRAM and 36 1GB storage drives. Network switching is provided in the form of an on-chip network fabric supporting 10GbE connectivity between nodes, obviating the need for an external switch. In addition to on-chip Ethernet, the SoC includes integrated controllers for memory, PCIe, and SATA drives, as well as system management logic.

Since each of the servers runs 5 watts at full load, the whole chassis draws only 240 watts. Not bad for 192 cores. Obviously these are not Xeon cores; the ECX-1000 chip tops out at 1.4 GHz, which is less than half the speed of a top-end x86 server CPU. But in its intended space of divide-and-conquer-computing, there are a lot less wasted cycles waiting for I/O to catch up. At just a little over a watt per thread, energy-efficiency is an order of magnitude better than conventional server platforms.

According to Arend Dittmer, Penguin’s director of product marketing, a fully-populated UXD1 chassis will run about $30-35K. He says they already have a trio of orders for the new platform: one from a financial services firm, and the other two from national labs – all for data analytics work. At this point, the systems are being targeted for experimentation, rather than production, as customers kick the tires to see how well the Penguin box works under their analytics loads.

While the volume market for such microservers is going to be in the commercial space, Dittmer sees such systems filling a comfortable niche in HPC shops. He says, for mainstream science computation, where FLOPS are king, this is not the right platform (and doesn’t try to be). But since there is a finite amount of power and real estate in a datacenter, it makes sense to offload the data analytics work of science to more efficient hardware like the UXD1.

Penguin is not the only server maker utilizing Calxeda silicon. UK-based Boston Limited offers a very similar system to the UXD1, which they call Viridis. The Boston box is a 2U chassis that houses up to 48 Calxeda nodes and is aimed at essentially the same application space that Penguin is targeting. According to David Power, Boston’s Head of HPC, they have a 36-bay, 4U platform in the works, based on the same Calxeda SoCs.

Both vendors are already looking ahead to Calxeda’s plans for its 64-bit ARM SoC, which the company has code-named “Lago.” No one has committed to a date, but it’s reasonable to think that these chips should start to appear in the 2014 timeframe, with server implementations to follow shortly thereafter.

By that time, Penguin and Boston should have plenty of company. HP has been flirting with Calxeda for some time with its Project Moonshot development platform, but opted to go with Intel Atom CPUs for its initial microserver line. Dell has been dipping its toes into the microserver space as well, but gave the nod to Marvell’s quad-core Armada XP 78460 chip. IBM has yet to choose sides, but if these initial microserver platforms start to gain traction, you can bet Big Blue will figure out a way to get into the game.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Strengthens European HPC Community Ties

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Strengthens European HPC Community Ties

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This