Sequoia Supercomputer Pumps Up Heart Research

By Tiffany Trader

October 24, 2012

Cardioid code image

The Cardioid code developed by a team of Livermore and IBM scientists divides the heart into a large number of manageable pieces, or subdomains. The development team used two approaches, called Voronoi (left) and grid (right), to break the enormous computing challenge into much smaller individual tasks. Source: LLNL

The world’s fastest computer has created the fastest computer simulation of the human heart.

The Lawrence Livermore National Laboratory’s Sequoia supercomputer, a TOP500 chart topper, was built to handle top secret nuclear weapons simulations, but before it goes behind the classified curtain, it is pumping out sophisticated cardiac simulations.

Earlier this month, Sequoia, which currently ranks number one on the TOP500 list of the world’s fastest computer systems, received a 2012 Breakthrough Award from Popular Mechanics magazine. Now the magazine is reporting on Sequoia’s ground-breaking heart simulations.

Clocking in at 16.32 sustained petaflops (20 PF peak), Sequoia is taking modeling and simulation to new heights, enabling researchers to capture greater complexity in a shorter time frame. With this advanced capability, LLNL scientists have been able to simulate the human heart down to the cellular level and use the resulting model to predict how the organ will respond to different drug compounds.

Principal investigator Dave Richards couldn’t resist a little showboating: “Other labs are working on similar models for many body systems, including the heart,” he told Popular Mechanics. “But Lawrence Livermore’s model has one major advantage: It runs on Sequoia, the most powerful supercomputer in the world and a recent PM Breakthrough Award winner.”

The simulations were made possible by an advanced modeling program, called Cardioid, that was developed by a team of scientists from LLNL and the IBM T. J. Watson Research Center. The highly scalable code simulates the electrophysiology of the heart. It works by breaking down the heart into units; the smaller the unit, the more accurate the model.

Until now the best modeling programs could achieve 0.2 mm in each direction. Cardioid can get down to 0.1 mm. Where previously researchers could run the simulations for tens of heartbeats, Cardioid executing on Sequoia captures thousands of heartbeats.

Scientists are seeing 300-fold speedups. It used to take 45 minutes to simulate just one beat, but now researchers can simulate an hour of heart activity – several thousand heartbeats – in seven hours.

With the less sophisticated codes, it was impossible to model the heart’s response to a drug or perform an electrocardiogram trace for a particular heart disorder. That kind of testing requires longer run times, which just wasn’t possible before Cardioid.

The model could potentially test a range of drugs and devices like pacemakers to examine their affect on the heart, paving the way for safer and more effective human testing. But it is especially suited to studying arrhythmia, a disorder of the heart in which the organ does not pump blood efficiently. Arrhythmias can lead to congestive heart failure, an inability of the heart to supply sufficient blood flow to meet the needs of the body.

There are various types of medications that disrupt cardiac rhythms. Even those designed to prevent arrhythmias can be harmful to some patients, and researchers do not yet fully understand exactly what causes these negative side effects. Cardioid will enable LLNL scientists to examine heart function as an anti-arrhythmia drug enters the bloodstream. They’ll be able to identify when drug levels are highest and when they drop off.

“Observing the full range of effects produced by a particular drug takes many hours,” noted computational scientist Art Mirin of LLNL. “With Cardioid, heart simulations over this timeframe are now possible for the first time.”

The Livermore–IBM team is also working on a mechanical model that simulates the contraction of the heart and pumping of blood. The electrical and mechanical simulations will be allowed to interact with each other, adding more realism to the heart model.

It’s not entirely clear why a national defense lab took on this heart simulation work. Fred Streitz, director of the Institute for Scientific Computing Research at LLNL, would say only that “there are legitimate national security implications for understanding how drugs affect human organs,” adding that the project stretched the limits of supercomputing in a manner that is relatable to the American people.

The cardiac modeling work was performed during the system’s “shakedown period” – the set-up and testing phase – and the team had to hurry to finish in the allotted time span. Once Sequoia becomes classified, it’s unclear if it will still be available to run Cardioid and other unclassified programs, although access will certainly be more difficult since the machine’s principle mission is running nuclear weapons codes.

Sequoia is an integral part of the NNSA’s Advanced Simulation and Computing (ASC) program, which is run by partner organizations LLNL, Los Alamos National Laboratory and Sandia National Laboratories. With 96 racks, 98,304 compute nodes, 1.6 million cores, and 1.6 petabytes of memory, Sequoia will help the NNSA fulfill its mission to “maintain and enhance the safety, security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing.”

The Cardioid simulation has been named as a finalist in the 2012 Gordon Bell Prize competition, awarded each year to recognize supercomputing’s crowning achievements. Research partners, Streitz, Richards, and Mirin, will reveal their results at the Supercomputing Conference in Salt Lake City, Utah, on November 13.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire