Titan Sets High Water Mark for GPU Supercomputing

By Michael Feldman

October 29, 2012

Oak Ridge National Laboratory (ORNL) has officially launched its much-anticipated Titan supercomputer, a Cray XK7 machine that will challenge IBM’s Sequoia for petaflop supremacy. With Titan, ORNL gets a system that is 10 times as powerful as Jaguar, the lab’s previous top system upon which the new machine is based. With a reported 27 peak petaflops, Titan now represents the most powerful number-cruncher in the world.

The 10-fold performance leap from Jaguar to Titan is courtesy of NVIDIA’s brand new K20 processors – the Kepler GPU that will be formally released sometime before the end of the year. Although the Titan upgrade also includes AMD’s latest 16-core Opteron CPUs, the lion’s share of the FLOPS will be derived from the NVIDIA chips.

In the conversion from Jaguar, a Cray XT5, ORNL essentially gutted the existing 200 cabinets and retrofitted them with nearly ten thousand XK7 blades. Each blade houses two nodes and each one of them holds a 16-core Opteron 6274 CPU and a Tesla K20 GPU module. The x86 Opteron chips run at a respectable 2.2 GHz, while the K20 hums along at a more leisurely 732 MHz. But because to the highly parallel nature of the GPU architecture, the K20 delivers around 10 times the FLOPS as its CPU companion. (Using the 27 peak PF value for Titan, a back-of-the-envelope calculation puts the new K20 at about 1.2-1.3 double precision teraflops.)

Thanks to the energy efficiency of the K20, which NVIDIA claims is going to three times as efficient its previous-generation Fermi GPU, Titan draws a mere 12.7 MW to power the whole system. That’s especially impressive when you consider that the x86-only Jaguar required 7 megawatts for a mere tenth of the FLOPS.

It would appear, though, that IBM’s Blue Gene/Q may retain the crown for energy-efficient supercomputing. The Sequoia system at Lawrence Livermore Lab draws just 7.9 MW to power its 20 peak petaflops. However, it’s a little bit of apples and oranges here. That 7.9 MW is actually the power draw for Sequoia’s Linpack run, which topped out at 16 petaflops. Since we don’t have the Linpack results for Titan just yet, it’s hard to tell if the GPU super will be able to come out ahead of Blue Gene/Q platform.

For multi-petaflopper, Titan is a little shy on memory capacity, claiming just 710 terabytes – 598 TB on the CPU side and 112 TB for the GPUs. The FLOPS-similar Sequoia has more than twice that – nearly 1.6 petabytes. Back in the day, the goal for balanced supercomputing was at least one byte of memory for every FLOP, but that era is long gone.

Titan provides around 1/40 of a byte per FLOP and from the GPU’s point of view, most of the memory on the wrong side of the PCIe bus – that is, next to the CPU. Welcome to the new normal.

Titan is more generous with disk space though, 13.6 PB in all, although again, a good deal less than that of its Sequoia cousin at 55 PB. Apparently disk storage is being managed by 192 Dell I/O servers, which, in aggregate, provide 240 GB/second of bandwidth to the storage arrays.
Titan’s big claim to fame is that it’s the first GPU-accelerated supercomputer in the world that’s has been scaled into the multi-petaflop realm. IBM’s Blue Gene/Q and Fujitsu’s K computer — both powered by custom CPU SoCs — are the only other platforms that have broken the 10-petaflop mark. Titan is also the first GPU-equipped machine of any size in the US. As such, it will provide a test platform for a lot of big science codes that have yet to take advantage of accelerators at scale.

Acceptance testing is already underway at Oak Ridge and users are in the process of porting and testing a variety of DOE-type science applications to the CPU-GPU supercomputer. These include codes in climate modeling (CAM-SE), biofuels (LAMMPS), astrophysics (NRDF), combustion (S3D), material science (WL-LSMS), and nuclear energy (Denovo).

According to Markus Eisenbach, his team has already been able to run the WL-LSMS code above the 10-petaflop mark on Titan. He says that level of performance will allow them to study the behavior of materials at temperatures above the point where they lose their magnetic properties.

At the National Center for Atmospheric Research (NCAR), they are already using the new system to speed atmospheric modeling codes. With Titan, Warren Washington’s NCAR team has been able to execute high-resolution models representing one to five years of simulations in just one computing day. On Jaguar, a computing day yielded only three months worth of simulations.

ORNL’s Tom Evans is using Titan cycles to model nuclear energy production. The simulations are for the purpose of improving the safety and performance of the reactors, while reducing the amount of waste. According to Evans, they’ve been able to run 3D simulations of a nuclear reactor core in hours, rather than weeks.

The machine will figure prominently into the upcoming INCITE awards. INCITE, which stands for Innovative and Novel Computation Impact on Theory of Experiment, is the DOE’s way of sharing with  the FLOPS with scientists and industrial users on the agency’s fastest machines. The program only accepts proposals for end users with “grand challenge”-type problems worthy of top tier supercomputing.

With its 20-plus-petaflop credentials, Titan will be far and away the most powerful system available for open science. (Sequoia belongs to the NNSA and spends most its cycles on classified nuclear weapons codes.) The DOE has received a record number of proposals for the machine, representing three times what Titan will be able to donate to the INCITE program.

Undoubtedly some of that pent-up demand is a result of the delayed entry of the US into GPU-accelerated supers. Over the past three years, American scientists and engineers have watched heterogeneous petascale systems being built overseas. China (with Tianhe-1A, Nebulae, and Mole 8.5), Japan (with TSUBAME 2.0), and even Russia (with Lomonosov) all managed to deploy ahead of the US.

Some of that is due to the slow uptake of GPU computing by IBM and Cray, the US government’s two largest providers of top tier HPC machinery. IBM offers GPU-accelerated gear on it x86 cluster offerings, but its flagship supercomputers are based on their in-house Blue Gene and Power franchises. Cray waited until May 2011 to deliver its first GPU-CPU platform, the XK6 (with Fermi Tesla GPUs), preferring to skip the earlier renditions of NVIDIA technology.

While Titan could be viewed as just another big supercomputer, there is a lot on the line here, especially for NVIDIA. If the system can be a productive petascale machine, it will go a long way toward establishing the company’s GPU computing architecture as the go-to accelerator technology for the path to exascale. The development that makes this less than assured is the imminent emergence of Intel’s Xeon Phi manycore coprocessor, and to a lesser extent, AMD’s future GPU and APU platforms.

Intel will get its initial chance to prove Xeon Phi’s worth as an HPC accelerator with Stampede, a 10 petaflop supercomputer that will be installed at the Texas Advanced Computing Center (TACC) before the end of the year. That Dell cluster will have 8 of those 10 petaflops delivered by Xeon Phi silicon and, as such, the system will represent the first big test case for Intel’s version of accelerated supercomputing.

It also represents the first credible challenge to NVIDIA on this front since the GPU-maker got into the HPC business in 2006. Whichever company is more successful at delivering HPC on a chip, the big winners will be the users themselves, who will soon have two vendors offering accelerator cards with over a teraflop of double precision performance. At a few thousand dollars per teraflop, supercomputing has never been so accessible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC’s Upgraded Ranch Data Storage System Debuts New Features, Exabyte Potential

May 22, 2019

There's a joke attributed to comedian Steven Wright that goes, "You can't have everything. Where would you put it?" Users of advanced computing can likely relate to this. The exponential growth of data poses a steep c Read more…

By Jorge Salazar, TACC

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often abused term: transparency. Another surprise: HPE apparently Read more…

By Doug Black and Tiffany Trader

BlueField SmartNIC Backs Transformation to Bare Metal Kubernetes

May 21, 2019

Hardware vendors are betting the transition to 5G wireless networks supporting myriad connected consumer and industrial devices also will accelerate the shift to heavy-duty bare-metal servers as a way to provision cloud- Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Smarter EDA: Leveraging New Technologies for Product Verification

There is perhaps no sector more competitive than the modern electronics industry. Macro-trends, including artificial intelligence, 5G, and the internet of things (IoT), continue to propel dramatic growth. Read more…

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This