IBM Takes Step Toward Nanotube-Based Computing

By Ian Armas Foster

October 30, 2012

From germanium to silicon and finally down to carbon. Back in the 1940s, scientists at Bell Labs purified germanium, a heavier element in the carbon/silicon family, used to make the first transistors. For the last several decades, scientists have been making smaller and smaller transistors out of silicon, doubling the transistor density every twelve to eighteen months, in accordance with Moore’s Law.

Computing advances rely on the continued exponential growth of transistors per chip. However, there is a finite amount that silicon transistors can shrink, and there are signs that the trend has already slowed. While transistor density continues to increase, “clock speed,” or the speed at which the transistors can turn on and off, has not. As such, processing in parallel to overcome this limitation has gained increased importance.

Carbon nanotubes would hypothetically kill two birds with one stone. Earlier this year, IBM presented a paper that demonstrated the ability of carbon to act as a transistor across just ten nanometers – half the size of silicon. Further, semi-conducting carbon provides a friendlier environment for electron movement. From a computing standpoint, that means data can be transported at higher speeds and that transistors can be more easily switched. This ultimately increases efficiency of the device by a factor of five to ten.

The issue with carbon nanotubes that prevented their consistently being turned into transistors is that they consist of both semi-conductive and metallic material. While the semi-conductive carbon nanotubes allow electrons to shift along them easier, the metallic side does not. As such, great pains have to be taken to sift out the metallic. Further, like their silicon brethren, carbon nanotubes have to be placed delicately and in a controlled fashion on the chip.

If those obstacles can be overcome, the technology has the potential to surpass silicon as the preferred transistor material. “The motivation to work on carbon nanotube transistors is that at extremely small nanoscale dimensions, they outperform transistors made from any other material,” said Supratik Guha, director of Physical Sciences at IBM Research.

According to him, carbon could outperform conventional silicon by a factor of five. “However,” he said, “there are challenges to address, such as ultra-high purity of the carbon nanotubes and deliberate placement at the nanoscale.”

To address those challenges, IBM came up with a chemical method to attract the semi-conducting material. By immersing a substrate consisting of hafnium oxide and silicon oxide into a liquid solution of carbon nanotubes, the semi-conductors attach themselves to the hafnium oxide. As a result, IBM was able to place ten thousand carbon-based transistors onto a wafer using standard semi-conductor processes.

Of course, today’s silicon-bearing chips harbor millions of transistors, a number that is expected to rise into the billions within the next couple of years. So carbon nanotubes still have a long way to go.

With that being said, IBM beat previous efforts, which were only able to mount a few hundred working carbon transistors. The advancements from here will come from being able to separate out the metallic from the semi-conducting, a process which is continues to be refined. According to Guha, IBM is fairly confident that by the end of the decade, they will be able to ensure 99.99 percent purity, leading to a point where carbon may take over as the element of choice for next-generation computing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Touts Strong Results on Financial Services Inference Benchmark

February 3, 2023

The next-gen Hopper family may be on its way, but that isn’t stopping Nvidia’s popular A100 GPU from leading another benchmark on its way out. This time, it’s the STAC-ML inference benchmark, produced by the Securi Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnerships in strategic technologies and defense industries across th Read more…

Pittsburgh Supercomputing Enables Transparent Medicare Outcome AI

February 2, 2023

Medical applications of AI are replete with promise, but stymied by opacity: with lives on the line, concerns over AI models’ often-inscrutable reasoning – and as a result, possible biases embedded in those models Read more…

Europe’s LUMI Supercomputer Has Officially Been Accepted

February 1, 2023

“LUMI is officially here!” proclaimed the headline of a blog post written by Pekka Manninen, director of science and technology for CSC, Finland’s state-owned IT center. The EuroHPC-organized supercomputer’s most Read more…

AWS Solution Channel

Shutterstock 2069893598

Cost-effective and accurate genomics analysis with Sentieon on AWS

This blog post was contributed by Don Freed, Senior Bioinformatics Scientist, and Brendan Gallagher, Head of Business Development at Sentieon; and Olivia Choudhury, PhD, Senior Partner Solutions Architect, Sujaya Srinivasan, Genomics Solutions Architect, and Aniket Deshpande, Senior Specialist, HPC HCLS at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1453953692

Microsoft and NVIDIA Experts Talk AI Infrastructure

As AI emerges as a crucial tool in so many sectors, it’s clear that the need for optimized AI infrastructure is growing. Going beyond just GPU-based clusters, cloud infrastructure that provides low-latency, high-bandwidth interconnects and high-performance storage can help organizations handle AI workloads more efficiently and produce faster results. Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for more computing specifically targeted at artificial intellige Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnership Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for Read more…

Roadmap for Building a US National AI Research Resource Released

January 31, 2023

Last week the National AI Research Resource (NAIRR) Task Force released its final report and roadmap for building a national AI infrastructure to include comput Read more…

PFAS Regulations, 3M Exit to Impact Two-Phase Cooling in HPC

January 27, 2023

Per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals,” pose a number of health risks to humans, with more suspected but not yet confirmed Read more…

Multiverse, Pasqal, and Crédit Agricole Tout Progress Using Quantum Computing in FS

January 26, 2023

Europe-based quantum computing pioneers Multiverse Computing and Pasqal, and global bank Crédit Agricole CIB today announced successful conclusion of a 1.5-yea Read more…

Critics Don’t Want Politicians Deciding the Future of Semiconductors

January 26, 2023

The future of the semiconductor industry was partially being decided last week by a mix of politicians, policy hawks and chip industry executives jockeying for Read more…

Riken Plans ‘Virtual Fugaku’ on AWS

January 26, 2023

The development of a national flagship supercomputer aimed at exascale computing continues to be a heated competition, especially in the United States, the Euro Read more…

Leading Solution Providers

Contributors

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire