Appro Heats Up HPC Portfolio with Warm Water Cooling

By Michael Feldman

October 31, 2012

Air-cooled servers may soon go the way of the single-core CPU. In high performance computing datacenters, the hottest new trend in energy efficiency is warm water cooling. IBM, Eurotech, and a handful of other vendors have paved the way with this technology and now Appro has announced its own solution in an attempt to set itself apart from the competition.

Warm water cooling is benefiting from a confluence of industry trends that have raised the profile of the technology. Especially for the hotter, denser HPC systems that are being shoehorned into datacenters these days, warm water technology can offer an optimal solution, balancing somewhat higher up-front cost with a much lower lifecycle cost.

Compared to traditionally air cooled systems, liquid cooling (at any temperature) offers better energy efficiency, thus lowering the power bill. That’s because water has much better thermal properties than air, requiring a lot less of it to cool a given piece of hardware. Using warm water instead of cool water has the additional advantage of doing away with a water chiller unit, greatly simplying the plumbing, not to mention reducing installation costs.

While warm water doesn’t have the chilling capacity of cold water, as long as you get liquid in close proximity to the hardware, it can cool even the hottest processors. Even water as warm as 45C (113F) can effectively cool a modern processor. And like cool water setups, the warmer outlet water from the servers can be reused to heat the datacenter and surrounding facilities.

The other development that is lighting a fire under this technology is the proliferation of high-wattage chips. The continued demand for performance means server chips are continuing to push the power envelope. Fast, high performance x86 CPUs can easily reach 130 watts. In a dense two-socket (or worse, four-socket) system, heat can build up quickly – all the more so when you consider more memory chips are needed to feed the growing number of cores on these processors.

In the HPC realm, an additional burden has been added with the advent of accelerators: GPUs and soon the Intel Xeon Phi. Although the chips themselves aren’t much hotter than a top-bin CPU, the inclusion of multiple gigabytes of graphics memory on an accelerator card pushes these devices well past the 200 watt realm. Once you start gluing a couple of these together on the same motherboard, along with their CPU hosts and main memory, all of a sudden you have over a kilowatt of hardware in a very small space.

It is in this environment that Appro has decided to offer its warm water cooling option, which it has dubbed Xtreme-Cool. The company claims it will reduce energy consumption by 50 percent and provide a PUE below 1.1. According the Appro, their cooling gear is designed to fold seamlessly into the company’s Xtreme-X blade system, which previously was offered only with standard air cooling or chilled water setups. But the Xtreme-Cool design is such that it will actually fit into any standard computer rack.

It’s especially geared for the dense blade designs available in Xtreme-X, the Appro platform that features dual-processor nodes, 80 of which can be fit into a standard 42U rack. Since the company will be offering a Xeon Phi option for these blades when the chips become available, there will be an extra incentive for customers to consider the warm water option. GPU accelerators will be supported as well.

Xtreme-Cool is different from most of the warm water cooling solutions out there, inasmuch as it’s built for standard rack enclosures. The heart of the system is the RackCDU (rack cooling device unit), a radiator-like component that sits on the inside of the rack enclosure. Two sets of tubes run from the unit to the server blade. One set feeds the warm water to the servers; the other transfers the server-heated water back to the RackCDU for cooling to ambient temperatures.

The tubes that go into the server wrap around the cold plates on top of the processor and memory components, the primary sources of heat on the motherboard. Dripless interconnectors are used for reliability. Appro does the entire installation, so from the facility manager’s point of view, it’s plug and play.

As mentioned before, Xtreme-Cool can be adapted to standard, non-Appro racks. Most other solutions, like that of IBM’s and Eurotech’s, are custom designs, architected to fit their particular blade systems. For example, the IBM solution, which is being used in SuperMUC, a three-petaflop supercomputer cluster constructed from iDataPlex servers, uses the company’s own hot water cooling system.

That one consists of custom-fitted aluminum plates that lay over the server motherboard. This design actually does a somewhat better job at extracting the heat – Appro says their solution will only extract about 80 percent of it – but at a cost that is considerably higher.

Appro is trying to hit the sweet spot here, designing a system that does a good job at heat extraction, but at a price point that they believe will deliver a faster return on investment than more custom designs. In truth, the company has not specified the price premium on the Xtreme-Cool option yet, but according to Appro marketing director Maria McLaughlin it will be “much cheaper than the proprietary systems.”

Xtreme-Cool systems won’t start shipping until the first quarter of 2013, but Appro will be demonstrating the product at the Supercomputing Conference (SC12), on November 12 to 15.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This