AMD Unveils 64-Bit ARM Strategy

By Tiffany Trader and Michael Feldman

November 1, 2012

On Monday, AMD announced it is adding ARM-based Opterons to its server portfolio, the first non-x86 Opterons in the company’s history. The new processors, due out in 2014, will use 64-bit ARM SoCs on top of its SeaMicro Freedom Fabric technology, and will be aimed at the datacenter and cloud space.

AMD ARMAt the Monday morning press briefing, CEO Rory Reed examined the backdrop for this bold move. “There’s no doubt that the cloud changes everything,” he said. “The cloud truly is the killer app that’s unlocking the future; it’s driving the fastest level of growth across the industry. Over the last decade, we’ve seen an annual increase of about 33 percent in CAPEX spending in the datacenter on the large mega-datacenter cloud services, and that’s only going to continue to evolve and expand.”

The modern computing landscape is changing. The growing interest in energy-efficient microservers marks an important shift. For the past two decades, x86 has been the only (commodity) option for mainstream server computing, but the emergence of microservers gives ARM a unique opportunity to gain a foothold in the market.

Dell and HP both have a microserver play, and last month we saw Penguin Computing jump on the bandwagon. Intel is attempting to address the market with tweaked variants of its Atom and Xeon processors, but AMD will the first chipmaker to offer both 64-bit ARM and x86 server processors.

It’s the 64-bit aspect that will enable the ARM architecture to compete with x86 in the datacenter realm; 32-bit chips have a limited address reach (4 GB), which is problematic for server-sized datasets. Although 64-bit implementations of ARM aren’t expected until 2014, chipmakers are beginning to lay out their roadmaps today. Besides AMD, Calxeda and NVIDIA have also announced intentions to take 64-bit ARM silicon into the datacenter.

Until now making a datacenter more efficient meant increasing CPU horsepower or upping the core count. With the rise of cloud, mobile and Web computing, there are more bytes streaming into the datacenter. However, a lot of these Web era workloads are highly-parallelizable. ARM CPUs, which grew up inside mobile devices, are particularly efficient at these types of slice-and-dice workloads and have a power profile that is about one-third their x86 cousins.

Dr. Lisa Su, AMD senior vice president and general manager, talked about the product plans in more detail at the company’s ARM press event. “The biggest change in the datacenter is there is no one size fits all,” she emphasized.

AMD is positioning itself to offer a broad menu of choices to meet different kinds of datacenter workloads, and has apparently come to the conclusion that some of them are better served by ARM rather than x86. In particular, the company thinks ARM-based servers will be a good fit for clouds and mega-datacenters, but it’s still targeting its more powerful x86-based Opterons for the heavier lifting, like rendering, machine learning and HPC applications.

AMD portfolio

Even though AMD initially plans to direct its ARM portfolio to the generic cloud and Web service space, customers may get a bit more creative. For example, ARM could be the way to go for some embarrassingly parallel HPC applications like genomic analysis, which doesn’t need scads of floating point horsepower nor single-threaded performance. AMD would probably rather sell higher-end x86 Opterons to such users, but the market will do what it wants. And given the up-front and power costs of large clusters, HPC users can be particularly opportunistic.

Aside from adopting the ARM architecture, AMD will also incorporate its SeaMicro Freedom Fabric into the chips. This is the company’s secret sauce that they claim will set it apart from competing ARM SoCs. The fabric optimizes system performance by offering a high-bandwidth, low-latency system interconnect that keeps all the CPUs well fed with data.

While the ARM-based server design has a lot of promise, including higher compute per dollar and compute per watt, changing architectures can’t be done overnight. From the software perspective, the biggest difference between x86 and ARM parts is the instruction set. At the very least, applications and operating systems must be recompiled to support the new platform. Meanwhile software that is closer to the metal, like compilers, will have to be tweaked or, in some cases, developed from scratch.

So while it may seem premature to announce a product in 2012 that won’t be ready until 2014, it will take at least that long to bring the software up to speed. On AMD’s end, they’ll be busy completing the chip design and lining up OEM partners. Indeed, ecosystem development has been the main thrust of all the early microserver announcements.

AMD Cortex A50-seriesThe day after AMD dropped the big news, ARM unveiled its 64-bit Cortex-A50 processor series based upon the ARMv8 architecture, which it introduced a year ago. The implementations include the Cortex-A53, ARM’s most energy-efficient yet, and the Cortex-A57, the more performant version. According to the company, 64-bit execution will enable “new opportunities in networking, server and high-performance computing.” In addition to AMD, Broadcom, Calxeda, HiSilicon, Samsung and STMicroelectronics are partnering with ARM to license the new processor series.

AMD is obviously betting on its new ARM-SeaMicro roadmap to help regain market share from its nemesis on the server front. AMD pioneered 64-bit x86 computing in 2003, and for a while, claimed a sizeable chunk of the business. After Intel followed suit with its 64-bit x86 offerings, AMD saw its market share steadily erode. Now that the chipmaker has, once again, decided to offer something completely different from Intel, we’ll see if history repeats itself.


Related articles

Penguin Joins Microserver ARMs Race

Dell Develops Second ARM Server Platform

Analyst Weighs In on 64-Bit ARM

Calxeda Takes Aim at Big Data HPC with ARM Server Chip

Arm Yourselves for Exascale, Part 1

Arm Yourselves for Exascale, Part 2

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This