Cray Launches Cascade, Embraces Intel-Based Supercomputing

By Michael Feldman

November 8, 2012

AMD-loving Cray has launched the XC30 supercomputer, a product line that will be powered by Intel Xeon processors. The platform is based on the company’s “Cascade” architecture, which is designed to bring a variety of processors and coprocessors under a common infrastructure. XC will become Cray’s flagship computing platform as it phases out its XE and XK line over the next year or so.

Cascade was one of the two designs that received government funding under DARPA’s High Productivity Computing Systems (HPCS) program. The research agency also injected money into IBM’s PERCS project, which was transformed into the company’s latest Power7-based line of supercomputers. The Cascade project became the basis for the XC line. And although the feds sunk a few hundred million into Cray’s coffers over the three HPCS phases, the supercomputer maker contributed the majority of the funding for the project’s R&D.

The XC30 series represents the first fruit of that effort, and this particular model will be powered solely by Xeon CPUs — initially the “Sandy Bridge” chips, and later, the socket-compatible “Ivy Bridge” Xeons, which are expected to make their appearance in 2013. Xeon Phi coprocessors will be added as an accelerator option later on, as will NVIDIA Tesla GPUs, but these will be introduced under different XC product SKUs.

The blade on the XC30 houses four dual-socket Xeon nodes fed by a single Aries interconnect chip. A chassis can hold up to 16 of these blades, which are linked together via a backplane (no cables). A full-outfitted chassis of 128 Sandy Bridge CPUs will deliver about 22 teraflops; the future Ivy Bridge chips should kick that up to 100 teraflops or so.

Up to six chassis can be hooked together in a couple of cabinets using short passive copper cabling. To scale beyond that, you need active optical cables, which allow configurations that span multiple rooms, even extending to different floors. That will get you into hundreds of cabinets and well into the multi-petaflop realm. Once the Xeon Phi and GPU accelerator options are available, these machines should be able to reach beyond 100 petaflops.

There are no short-term plans to build an Opteron-based XC, the reason for which will become apparent in a moment. And although Cray has not hinted about more exotic processors for XC, the original idea behind Cascade was to be able to swallow just about any chip with an HPC bent. So FPGAs, Cray’s own ThreadStorm processor, or even future ARM-based chips might end up in the mix at some point.
The one constant in the XC platform will be Aries, Cray’s third-generation supercomputing interconnect fabric, which will tie together all the processors and accelerators. Aries follows SeaStar and Gemini, which glued together the processors in the XT and XE/XK lines, respectively. As you might suspect, the new interconnect is higher performing that its predecessors, offering improvements in global communications and synchronization. Aries is capable of 8 to 10 GB/sec of real I/O in and out of each node. Global bandwidth has been increased 20-fold, delivering up to 120 million gets and puts per second.

Aries ASIC  

Aries will use PCIe Gen3 as the processor interface, which for all practical purposes excludes Opterons — even the new Opteron 6300 CPUs unveiled last week are using PCIe Gen2. Presumably the future Opteron 6400 series, or whatever they’re called, will incorporate Gen3, and Cray will then have the option to design an AMD blade for XC. In any case, according to Cray VP Barry Bolding, they don’t need an Opteron solution for the XC right away, inasmuch as the current XE/XK will be offered for another year.

Aries is unique in another way; it represents the company’s last in-house-designed interconnect. The technology was sold to Intel back in April, but Cray still has rights to produce as many Aries NICs as it wants. They currently employ TSMC to manufacture the 40nm Aries chip, and will likely do so for the lifetime of the XC line.

Besides the interconnect upgrade, the new platform also incorporates a new network topology. Unlike the older XT/XE/XK lines, which relied on a 3D torus, XC uses a Dragonfly topology, which is a kind of flattened Butterfly. Dragonfly offers the all-to-all bandwidth of a fat tree topology, but does so with the network infrastructure and cost of a 3D torus.

Bolding says that unlike a torus network, which adds extra hops as it scales out, the Dragonfly design maxes out at five hops, regardless of system size. That improves latency substantially on these larger systems, while also making it easier to distribute jobs across the nodes without being concerned about lost performance.

The software stack remains fundamentally the same as the XE/XK line, with Cray’s Linux Environment (CLE) at the center, along with an array of compilers, debuggers, performance tools and job schedulers. The Intel compiler has been added for obvious reasons, as well as SLURM, an increasingly popular job scheduler. Cray has also provided a compiler and runtime for Chapel, a programming language that was developed as part of the HPCS work to improve developer productivity for parallel programming. Chapel is open source, but the version you get with the XC30 is targeted to that platform and carries support with it.

The XC30 is shipping now to some early customers, but will be generally available in January. Bolding says they already have a healthy pipeline of customers for the XC30 (and future XC offerings), including NERSC in the US, HLRS in Germany, CSCS in Switzerland, Pawsey in Australia, Kyoto University in Japan, and CSC in Finland. “It’s great to have such broad acceptance of the product line,” says Bolding, who expects it to be the company’s most successful supercomputer ever.

Pricing is not available, but if you have to ask, you probably can’t afford it. Most, if not all of these systems, will end up at government labs and large research institutions with deep pockets. A smaller variant is in the works, which is aimed at commercial customers. That version is slated to become available around the middle of next year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This