Intel Brings Manycore x86 to Market with Knights Corner

By Michael Feldman

November 12, 2012

Intel Corp. officially made its entry into the manycore realm today as it debuted “Knights Corner,” the company’s first Xeon Phi coprocessor. The new products clock in at just over a teraflop, double precision, setting the stage for an HPC accelerator battle that will pit Intel against GPU makers NVIDIA and AMD. Both of those companies also released their latest HPC accelerators into the wild earlier today at the annual Supercomputing Conference in Salt Lake City.

The 22nm Knights Corner chips will initially be going into two Xeon Phi products: the 3120A and 5110P, both of which are PCIe cards outfitted with a single coprocessor and several gigabytes of GDDR5 memory. A pre-production part, the SE10P, is also in circulation, but will not be generally available.

FLOPS-wise, the two cards are rather similar. The 3120A delivers 1.003 double precision teraflops with 60 cores (1.053 GHZ), while the 5110P offers a skosh more, at 1.011 teraflops, but does so with just 57 cores that are clocked somewhat higher (1.1 GHz). The big difference is memory. The 5110P houses 8 GB and delivers 320 GB/sec of peak bandwidth; the 3120A, comes with 6 GB and 240 GB/sec of bandwidth.

The memory gap between the two cards defines their different application targets. The 3120A is aimed at compute-bound workloads, where the data can be keep locally on the card or, better yet, in on-chip cache. That makes it the device of choice for many applications in financial services, life sciences, and codes that rely a lot on linear algebra calculations.

For applications that lean more toward the data-intensive side of the spectrum, or that rely on streaming data, Intel will point you to the 5110P. There, the higher memory capacity and bandwidth will be better for apps like digital content creation, seismic modeling, and ray tracing.

There’s a significant difference in power consumption too. The 5110P draws 225 watts at peak load, while the 3120A is rated at 300 watts, which is going to limit its deployment in densely configured servers. Nevertheless, Intel says this latter card is the go-to product for situations where you want to maximize FLOPS per dollar. Intel’s recommended price is below $2,000 for this part, while the higher memory 5110P is being targeted at $2,649.

The two product also differ in cooling regimes. The P in the 5110P means it’s a passively cooled card, which is more convenient for servers, especially denser set-ups that are all the rage these days in HPC. The 3120A is actively cooled, so it would be more applicable to less densely configured servers and workstations. Intel also intends to offer a passively cooled 3100 part at some point.

The 5110P is shipping today, with general availability on January 28. The 3120A is scheduled for availability sometime in the first half of 2013.

The aforementioned SE10P has also been shipping for a while to satisfy early customers, namely TACC (The Texas Advanced Computing Center), for its 10-petaflop Stampede supercomputer. Stampede is already up and running, but apparently not at full capacity. The Linpack submission for the TOP500 had it at 4 peak petaflops (2.6 petaflops Linpack), which is less than half it’s final  FLOPS level.

According to Intel, the SE10P has essentially the same feature set as the 5110P, but it runs at 300 watts and with about 10 percent better peak memory bandwidth. As mentioned before, this part is not slated for general production, so it’s possible that the remainder of Stampede will be built out with the 5110P, or perhaps some other yet to be announced Xeon Phi.

Because the SE10P has been available for awhile, a lot of the benchmarks Intel is initially touting (including the ones mentioned here), are based on this card. The other two products shouldn’t be too far off though, especially the 5110P. For Linpack, Intel has clocked this pre-production part at 803 teraflops and DGEMM (double precision matrix multiply) at 883 teraflops, and SGEMM (single precision matrix multiply) at 1,860 gigaflops. STREAM Triad, which measures memory performance, checks in at 181 GB/sec with error correction (ECC) off and 175 GB/sec when it’s on. All those results are between two to three times better than that delivered by a 2-socket server equipped with Xeon E5-2670 (Sandy Bridge) CPUs.

In fact, Intel is telling customers that for parallel applications that can take advantage of the Xeon Phi’s vector capabilities, codes will generally see a 2X to 3X speedup when you drop in a Knights Corner coprocessor. For example, the chipmaker is reporting a 2.53X performance bump for a seismic imaging code, 2.52X for molecular dynamics, 2.27X for lattice QCD, 1.7X for a finite element solver, and 1.88X for ray tracing. There are a few outliers for certain single-precision financial codes: 10.75X for Black Scholes and 8.92X for Monte Carlo, thanks mainly to on-chip support for transcendental functions in the Xeon Phi platform.

Overall though, Intel is promising 2X to 3X speedups, and only for software that lends itself to parallelization and vectorization. According to Joe Curley, Intel’s director of marketing for the Data Center Group, that entails a relatively small portion of HPC applications. “But,” he says, “customers who have those applications are motivated to find ways to get performance breakthroughs.”

Intel has to thread the needle here. It can’t tout the Xeon Phi at the expense of its mainstream Xeon CPUs. The idea is to speed up applications or portions of applications that are out of reach for straight Xeons. But the chipmaker wants to sell you both products — one for maximizing single-threaded codes, the other for highly parallel, vector-intensive ones. That’s not really different from how NVIDIA has positioned its GPU accelerators relative to CPUs.

NVIDIA, though, is more aggressive about pointing to big performance increases over CPU-only platforms, more on the order of 5X to 30X and beyond. For its new K20X Tesla part announced earlier today, the GPU-maker is claiming a 7X performance advantage over to a Sandy Bridge Xeon. Although that makes it seem like the GPU competition is three times faster than Knights Corner, the NVIDIA comparison is GPU-to-CPU, while Intel prefers to match its coprocessor against two Xeons.

Nevertheless, NVIDIA’s K20 does top Knights Corner in both raw performance and performance per watt. The 235 watt K20X offers 1.31 double precision teraflops, while the 225 watt 5110P, at 1.011 teraflops, delivers 300 gigaflops less. Advantage NVIDIA.

It appears to be even more skewed for single precision FLOPS, where the K20X offers three times its double precision performance; for the Knights Corner, single precision appears to be just twice that of its double precision results.

On the other hand, the 5110P is top in memory capacity and bandwidth. At 8 GB and 320 GB/sec, respectively, this Knights Corner part outruns the K20X’s 6 GB and 250 GB/sec by a wide margin. For codes that are more data-bound than compute-bound, that could be a decided advantage.

But Intel believes its biggest hammer against GPUs is its programming environment. It allows developers to use the same Intel parallel compilers, libraries and tools they are using for their Xeon codes. Third-party development tools from CAPS enterprise, PGI, Rogue Wave, Allinea, NAG, and others also now include Xeon Phi support.

Intel also likes to point out that GPUs are best at speeding up data parallel apps, and a number of HPC applications do not map very well to that model. “An awful lot of scientific programs really don’t tolerate some of the limitations of explicit data parallelism,” Curley told HPCwire. “Codes can branch; codes can have a great deal of recursion in them; codes can be self-modifying; codes can use sparse irregular data sets. All of which can become vexing for explicitly data parallel architectures, and all of which run on the Intel Xeon Phi.”

That’s not to say it will be a snap to create high-performing Xeon Phi codes. You may be able get applications up and running in a matter of days via some simple code tweaks and a recompilation, but Xeon Phi represents a true throughput accelerator design, and trying to treat it as a manycore CPU, as Intel has sometimes implied, will probably not lead to accelerated applications.

The proof will be in the application pudding. At this point, NVIDIA and the CUDA faithful have a six-year head start in porting codes to HPC accelerators. Intel, though, is a force to be reckoned with, so if the chipmaker can garner enough enthusiasm on the software side, it could make up for lost time rather quickly.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Officials, scientists and other stakeholders celebrated the new sy Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Indiana University Researchers Use Supercomputing to Model the State’s Largest Watershed

February 20, 2020

With water stressors on the rise, understanding and protecting water supplies is more important than ever. Now, a team of researchers from Indiana University has created a new climate change data portal to help Indianans Read more…

By Staff report

TACC – Supporting Portable, Reproducible, Computational Science with Containers

February 20, 2020

Researchers who use supercomputers for science typically don't limit themselves to one system. They move their projects to whatever resources are available, often using many different systems simultaneously, in their lab Read more…

By Aaron Dubrow

China Researchers Set Distance Record in Quantum Memory Entanglement

February 20, 2020

Efforts to develop the necessary capabilities for building a practical ‘quantum-based’ internet have been ongoing for years. One of the biggest challenges is being able to maintain and manage entanglement of remote q Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

New Algorithm Allows PCs to Challenge HPC in Weather Forecasting

February 19, 2020

Accurate weather forecasting has, by and large, been situated squarely in the domain of high-performance computing – just this week, the UK announced a nearly $1.6 billion investment in the world’s largest supercompu Read more…

By Oliver Peckham

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This