Intel Brings Manycore x86 to Market with Knights Corner

By Michael Feldman

November 12, 2012

Intel Corp. officially made its entry into the manycore realm today as it debuted “Knights Corner,” the company’s first Xeon Phi coprocessor. The new products clock in at just over a teraflop, double precision, setting the stage for an HPC accelerator battle that will pit Intel against GPU makers NVIDIA and AMD. Both of those companies also released their latest HPC accelerators into the wild earlier today at the annual Supercomputing Conference in Salt Lake City.

The 22nm Knights Corner chips will initially be going into two Xeon Phi products: the 3120A and 5110P, both of which are PCIe cards outfitted with a single coprocessor and several gigabytes of GDDR5 memory. A pre-production part, the SE10P, is also in circulation, but will not be generally available.

FLOPS-wise, the two cards are rather similar. The 3120A delivers 1.003 double precision teraflops with 60 cores (1.053 GHZ), while the 5110P offers a skosh more, at 1.011 teraflops, but does so with just 57 cores that are clocked somewhat higher (1.1 GHz). The big difference is memory. The 5110P houses 8 GB and delivers 320 GB/sec of peak bandwidth; the 3120A, comes with 6 GB and 240 GB/sec of bandwidth.

The memory gap between the two cards defines their different application targets. The 3120A is aimed at compute-bound workloads, where the data can be keep locally on the card or, better yet, in on-chip cache. That makes it the device of choice for many applications in financial services, life sciences, and codes that rely a lot on linear algebra calculations.

For applications that lean more toward the data-intensive side of the spectrum, or that rely on streaming data, Intel will point you to the 5110P. There, the higher memory capacity and bandwidth will be better for apps like digital content creation, seismic modeling, and ray tracing.

There’s a significant difference in power consumption too. The 5110P draws 225 watts at peak load, while the 3120A is rated at 300 watts, which is going to limit its deployment in densely configured servers. Nevertheless, Intel says this latter card is the go-to product for situations where you want to maximize FLOPS per dollar. Intel’s recommended price is below $2,000 for this part, while the higher memory 5110P is being targeted at $2,649.

The two product also differ in cooling regimes. The P in the 5110P means it’s a passively cooled card, which is more convenient for servers, especially denser set-ups that are all the rage these days in HPC. The 3120A is actively cooled, so it would be more applicable to less densely configured servers and workstations. Intel also intends to offer a passively cooled 3100 part at some point.

The 5110P is shipping today, with general availability on January 28. The 3120A is scheduled for availability sometime in the first half of 2013.

The aforementioned SE10P has also been shipping for a while to satisfy early customers, namely TACC (The Texas Advanced Computing Center), for its 10-petaflop Stampede supercomputer. Stampede is already up and running, but apparently not at full capacity. The Linpack submission for the TOP500 had it at 4 peak petaflops (2.6 petaflops Linpack), which is less than half it’s final  FLOPS level.

According to Intel, the SE10P has essentially the same feature set as the 5110P, but it runs at 300 watts and with about 10 percent better peak memory bandwidth. As mentioned before, this part is not slated for general production, so it’s possible that the remainder of Stampede will be built out with the 5110P, or perhaps some other yet to be announced Xeon Phi.

Because the SE10P has been available for awhile, a lot of the benchmarks Intel is initially touting (including the ones mentioned here), are based on this card. The other two products shouldn’t be too far off though, especially the 5110P. For Linpack, Intel has clocked this pre-production part at 803 teraflops and DGEMM (double precision matrix multiply) at 883 teraflops, and SGEMM (single precision matrix multiply) at 1,860 gigaflops. STREAM Triad, which measures memory performance, checks in at 181 GB/sec with error correction (ECC) off and 175 GB/sec when it’s on. All those results are between two to three times better than that delivered by a 2-socket server equipped with Xeon E5-2670 (Sandy Bridge) CPUs.

In fact, Intel is telling customers that for parallel applications that can take advantage of the Xeon Phi’s vector capabilities, codes will generally see a 2X to 3X speedup when you drop in a Knights Corner coprocessor. For example, the chipmaker is reporting a 2.53X performance bump for a seismic imaging code, 2.52X for molecular dynamics, 2.27X for lattice QCD, 1.7X for a finite element solver, and 1.88X for ray tracing. There are a few outliers for certain single-precision financial codes: 10.75X for Black Scholes and 8.92X for Monte Carlo, thanks mainly to on-chip support for transcendental functions in the Xeon Phi platform.

Overall though, Intel is promising 2X to 3X speedups, and only for software that lends itself to parallelization and vectorization. According to Joe Curley, Intel’s director of marketing for the Data Center Group, that entails a relatively small portion of HPC applications. “But,” he says, “customers who have those applications are motivated to find ways to get performance breakthroughs.”

Intel has to thread the needle here. It can’t tout the Xeon Phi at the expense of its mainstream Xeon CPUs. The idea is to speed up applications or portions of applications that are out of reach for straight Xeons. But the chipmaker wants to sell you both products — one for maximizing single-threaded codes, the other for highly parallel, vector-intensive ones. That’s not really different from how NVIDIA has positioned its GPU accelerators relative to CPUs.

NVIDIA, though, is more aggressive about pointing to big performance increases over CPU-only platforms, more on the order of 5X to 30X and beyond. For its new K20X Tesla part announced earlier today, the GPU-maker is claiming a 7X performance advantage over to a Sandy Bridge Xeon. Although that makes it seem like the GPU competition is three times faster than Knights Corner, the NVIDIA comparison is GPU-to-CPU, while Intel prefers to match its coprocessor against two Xeons.

Nevertheless, NVIDIA’s K20 does top Knights Corner in both raw performance and performance per watt. The 235 watt K20X offers 1.31 double precision teraflops, while the 225 watt 5110P, at 1.011 teraflops, delivers 300 gigaflops less. Advantage NVIDIA.

It appears to be even more skewed for single precision FLOPS, where the K20X offers three times its double precision performance; for the Knights Corner, single precision appears to be just twice that of its double precision results.

On the other hand, the 5110P is top in memory capacity and bandwidth. At 8 GB and 320 GB/sec, respectively, this Knights Corner part outruns the K20X’s 6 GB and 250 GB/sec by a wide margin. For codes that are more data-bound than compute-bound, that could be a decided advantage.

But Intel believes its biggest hammer against GPUs is its programming environment. It allows developers to use the same Intel parallel compilers, libraries and tools they are using for their Xeon codes. Third-party development tools from CAPS enterprise, PGI, Rogue Wave, Allinea, NAG, and others also now include Xeon Phi support.

Intel also likes to point out that GPUs are best at speeding up data parallel apps, and a number of HPC applications do not map very well to that model. “An awful lot of scientific programs really don’t tolerate some of the limitations of explicit data parallelism,” Curley told HPCwire. “Codes can branch; codes can have a great deal of recursion in them; codes can be self-modifying; codes can use sparse irregular data sets. All of which can become vexing for explicitly data parallel architectures, and all of which run on the Intel Xeon Phi.”

That’s not to say it will be a snap to create high-performing Xeon Phi codes. You may be able get applications up and running in a matter of days via some simple code tweaks and a recompilation, but Xeon Phi represents a true throughput accelerator design, and trying to treat it as a manycore CPU, as Intel has sometimes implied, will probably not lead to accelerated applications.

The proof will be in the application pudding. At this point, NVIDIA and the CUDA faithful have a six-year head start in porting codes to HPC accelerators. Intel, though, is a force to be reckoned with, so if the chipmaker can garner enough enthusiasm on the software side, it could make up for lost time rather quickly.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This