Intel Brings Manycore x86 to Market with Knights Corner

By Michael Feldman

November 12, 2012

Intel Corp. officially made its entry into the manycore realm today as it debuted “Knights Corner,” the company’s first Xeon Phi coprocessor. The new products clock in at just over a teraflop, double precision, setting the stage for an HPC accelerator battle that will pit Intel against GPU makers NVIDIA and AMD. Both of those companies also released their latest HPC accelerators into the wild earlier today at the annual Supercomputing Conference in Salt Lake City.

The 22nm Knights Corner chips will initially be going into two Xeon Phi products: the 3120A and 5110P, both of which are PCIe cards outfitted with a single coprocessor and several gigabytes of GDDR5 memory. A pre-production part, the SE10P, is also in circulation, but will not be generally available.

FLOPS-wise, the two cards are rather similar. The 3120A delivers 1.003 double precision teraflops with 60 cores (1.053 GHZ), while the 5110P offers a skosh more, at 1.011 teraflops, but does so with just 57 cores that are clocked somewhat higher (1.1 GHz). The big difference is memory. The 5110P houses 8 GB and delivers 320 GB/sec of peak bandwidth; the 3120A, comes with 6 GB and 240 GB/sec of bandwidth.

The memory gap between the two cards defines their different application targets. The 3120A is aimed at compute-bound workloads, where the data can be keep locally on the card or, better yet, in on-chip cache. That makes it the device of choice for many applications in financial services, life sciences, and codes that rely a lot on linear algebra calculations.

For applications that lean more toward the data-intensive side of the spectrum, or that rely on streaming data, Intel will point you to the 5110P. There, the higher memory capacity and bandwidth will be better for apps like digital content creation, seismic modeling, and ray tracing.

There’s a significant difference in power consumption too. The 5110P draws 225 watts at peak load, while the 3120A is rated at 300 watts, which is going to limit its deployment in densely configured servers. Nevertheless, Intel says this latter card is the go-to product for situations where you want to maximize FLOPS per dollar. Intel’s recommended price is below $2,000 for this part, while the higher memory 5110P is being targeted at $2,649.

The two product also differ in cooling regimes. The P in the 5110P means it’s a passively cooled card, which is more convenient for servers, especially denser set-ups that are all the rage these days in HPC. The 3120A is actively cooled, so it would be more applicable to less densely configured servers and workstations. Intel also intends to offer a passively cooled 3100 part at some point.

The 5110P is shipping today, with general availability on January 28. The 3120A is scheduled for availability sometime in the first half of 2013.

The aforementioned SE10P has also been shipping for a while to satisfy early customers, namely TACC (The Texas Advanced Computing Center), for its 10-petaflop Stampede supercomputer. Stampede is already up and running, but apparently not at full capacity. The Linpack submission for the TOP500 had it at 4 peak petaflops (2.6 petaflops Linpack), which is less than half it’s final  FLOPS level.

According to Intel, the SE10P has essentially the same feature set as the 5110P, but it runs at 300 watts and with about 10 percent better peak memory bandwidth. As mentioned before, this part is not slated for general production, so it’s possible that the remainder of Stampede will be built out with the 5110P, or perhaps some other yet to be announced Xeon Phi.

Because the SE10P has been available for awhile, a lot of the benchmarks Intel is initially touting (including the ones mentioned here), are based on this card. The other two products shouldn’t be too far off though, especially the 5110P. For Linpack, Intel has clocked this pre-production part at 803 teraflops and DGEMM (double precision matrix multiply) at 883 teraflops, and SGEMM (single precision matrix multiply) at 1,860 gigaflops. STREAM Triad, which measures memory performance, checks in at 181 GB/sec with error correction (ECC) off and 175 GB/sec when it’s on. All those results are between two to three times better than that delivered by a 2-socket server equipped with Xeon E5-2670 (Sandy Bridge) CPUs.

In fact, Intel is telling customers that for parallel applications that can take advantage of the Xeon Phi’s vector capabilities, codes will generally see a 2X to 3X speedup when you drop in a Knights Corner coprocessor. For example, the chipmaker is reporting a 2.53X performance bump for a seismic imaging code, 2.52X for molecular dynamics, 2.27X for lattice QCD, 1.7X for a finite element solver, and 1.88X for ray tracing. There are a few outliers for certain single-precision financial codes: 10.75X for Black Scholes and 8.92X for Monte Carlo, thanks mainly to on-chip support for transcendental functions in the Xeon Phi platform.

Overall though, Intel is promising 2X to 3X speedups, and only for software that lends itself to parallelization and vectorization. According to Joe Curley, Intel’s director of marketing for the Data Center Group, that entails a relatively small portion of HPC applications. “But,” he says, “customers who have those applications are motivated to find ways to get performance breakthroughs.”

Intel has to thread the needle here. It can’t tout the Xeon Phi at the expense of its mainstream Xeon CPUs. The idea is to speed up applications or portions of applications that are out of reach for straight Xeons. But the chipmaker wants to sell you both products — one for maximizing single-threaded codes, the other for highly parallel, vector-intensive ones. That’s not really different from how NVIDIA has positioned its GPU accelerators relative to CPUs.

NVIDIA, though, is more aggressive about pointing to big performance increases over CPU-only platforms, more on the order of 5X to 30X and beyond. For its new K20X Tesla part announced earlier today, the GPU-maker is claiming a 7X performance advantage over to a Sandy Bridge Xeon. Although that makes it seem like the GPU competition is three times faster than Knights Corner, the NVIDIA comparison is GPU-to-CPU, while Intel prefers to match its coprocessor against two Xeons.

Nevertheless, NVIDIA’s K20 does top Knights Corner in both raw performance and performance per watt. The 235 watt K20X offers 1.31 double precision teraflops, while the 225 watt 5110P, at 1.011 teraflops, delivers 300 gigaflops less. Advantage NVIDIA.

It appears to be even more skewed for single precision FLOPS, where the K20X offers three times its double precision performance; for the Knights Corner, single precision appears to be just twice that of its double precision results.

On the other hand, the 5110P is top in memory capacity and bandwidth. At 8 GB and 320 GB/sec, respectively, this Knights Corner part outruns the K20X’s 6 GB and 250 GB/sec by a wide margin. For codes that are more data-bound than compute-bound, that could be a decided advantage.

But Intel believes its biggest hammer against GPUs is its programming environment. It allows developers to use the same Intel parallel compilers, libraries and tools they are using for their Xeon codes. Third-party development tools from CAPS enterprise, PGI, Rogue Wave, Allinea, NAG, and others also now include Xeon Phi support.

Intel also likes to point out that GPUs are best at speeding up data parallel apps, and a number of HPC applications do not map very well to that model. “An awful lot of scientific programs really don’t tolerate some of the limitations of explicit data parallelism,” Curley told HPCwire. “Codes can branch; codes can have a great deal of recursion in them; codes can be self-modifying; codes can use sparse irregular data sets. All of which can become vexing for explicitly data parallel architectures, and all of which run on the Intel Xeon Phi.”

That’s not to say it will be a snap to create high-performing Xeon Phi codes. You may be able get applications up and running in a matter of days via some simple code tweaks and a recompilation, but Xeon Phi represents a true throughput accelerator design, and trying to treat it as a manycore CPU, as Intel has sometimes implied, will probably not lead to accelerated applications.

The proof will be in the application pudding. At this point, NVIDIA and the CUDA faithful have a six-year head start in porting codes to HPC accelerators. Intel, though, is a force to be reckoned with, so if the chipmaker can garner enough enthusiasm on the software side, it could make up for lost time rather quickly.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This