Intel Brings Manycore x86 to Market with Knights Corner

By Michael Feldman

November 12, 2012

Intel Corp. officially made its entry into the manycore realm today as it debuted “Knights Corner,” the company’s first Xeon Phi coprocessor. The new products clock in at just over a teraflop, double precision, setting the stage for an HPC accelerator battle that will pit Intel against GPU makers NVIDIA and AMD. Both of those companies also released their latest HPC accelerators into the wild earlier today at the annual Supercomputing Conference in Salt Lake City.

The 22nm Knights Corner chips will initially be going into two Xeon Phi products: the 3120A and 5110P, both of which are PCIe cards outfitted with a single coprocessor and several gigabytes of GDDR5 memory. A pre-production part, the SE10P, is also in circulation, but will not be generally available.

FLOPS-wise, the two cards are rather similar. The 3120A delivers 1.003 double precision teraflops with 60 cores (1.053 GHZ), while the 5110P offers a skosh more, at 1.011 teraflops, but does so with just 57 cores that are clocked somewhat higher (1.1 GHz). The big difference is memory. The 5110P houses 8 GB and delivers 320 GB/sec of peak bandwidth; the 3120A, comes with 6 GB and 240 GB/sec of bandwidth.

The memory gap between the two cards defines their different application targets. The 3120A is aimed at compute-bound workloads, where the data can be keep locally on the card or, better yet, in on-chip cache. That makes it the device of choice for many applications in financial services, life sciences, and codes that rely a lot on linear algebra calculations.

For applications that lean more toward the data-intensive side of the spectrum, or that rely on streaming data, Intel will point you to the 5110P. There, the higher memory capacity and bandwidth will be better for apps like digital content creation, seismic modeling, and ray tracing.

There’s a significant difference in power consumption too. The 5110P draws 225 watts at peak load, while the 3120A is rated at 300 watts, which is going to limit its deployment in densely configured servers. Nevertheless, Intel says this latter card is the go-to product for situations where you want to maximize FLOPS per dollar. Intel’s recommended price is below $2,000 for this part, while the higher memory 5110P is being targeted at $2,649.

The two product also differ in cooling regimes. The P in the 5110P means it’s a passively cooled card, which is more convenient for servers, especially denser set-ups that are all the rage these days in HPC. The 3120A is actively cooled, so it would be more applicable to less densely configured servers and workstations. Intel also intends to offer a passively cooled 3100 part at some point.

The 5110P is shipping today, with general availability on January 28. The 3120A is scheduled for availability sometime in the first half of 2013.

The aforementioned SE10P has also been shipping for a while to satisfy early customers, namely TACC (The Texas Advanced Computing Center), for its 10-petaflop Stampede supercomputer. Stampede is already up and running, but apparently not at full capacity. The Linpack submission for the TOP500 had it at 4 peak petaflops (2.6 petaflops Linpack), which is less than half it’s final  FLOPS level.

According to Intel, the SE10P has essentially the same feature set as the 5110P, but it runs at 300 watts and with about 10 percent better peak memory bandwidth. As mentioned before, this part is not slated for general production, so it’s possible that the remainder of Stampede will be built out with the 5110P, or perhaps some other yet to be announced Xeon Phi.

Because the SE10P has been available for awhile, a lot of the benchmarks Intel is initially touting (including the ones mentioned here), are based on this card. The other two products shouldn’t be too far off though, especially the 5110P. For Linpack, Intel has clocked this pre-production part at 803 teraflops and DGEMM (double precision matrix multiply) at 883 teraflops, and SGEMM (single precision matrix multiply) at 1,860 gigaflops. STREAM Triad, which measures memory performance, checks in at 181 GB/sec with error correction (ECC) off and 175 GB/sec when it’s on. All those results are between two to three times better than that delivered by a 2-socket server equipped with Xeon E5-2670 (Sandy Bridge) CPUs.

In fact, Intel is telling customers that for parallel applications that can take advantage of the Xeon Phi’s vector capabilities, codes will generally see a 2X to 3X speedup when you drop in a Knights Corner coprocessor. For example, the chipmaker is reporting a 2.53X performance bump for a seismic imaging code, 2.52X for molecular dynamics, 2.27X for lattice QCD, 1.7X for a finite element solver, and 1.88X for ray tracing. There are a few outliers for certain single-precision financial codes: 10.75X for Black Scholes and 8.92X for Monte Carlo, thanks mainly to on-chip support for transcendental functions in the Xeon Phi platform.

Overall though, Intel is promising 2X to 3X speedups, and only for software that lends itself to parallelization and vectorization. According to Joe Curley, Intel’s director of marketing for the Data Center Group, that entails a relatively small portion of HPC applications. “But,” he says, “customers who have those applications are motivated to find ways to get performance breakthroughs.”

Intel has to thread the needle here. It can’t tout the Xeon Phi at the expense of its mainstream Xeon CPUs. The idea is to speed up applications or portions of applications that are out of reach for straight Xeons. But the chipmaker wants to sell you both products — one for maximizing single-threaded codes, the other for highly parallel, vector-intensive ones. That’s not really different from how NVIDIA has positioned its GPU accelerators relative to CPUs.

NVIDIA, though, is more aggressive about pointing to big performance increases over CPU-only platforms, more on the order of 5X to 30X and beyond. For its new K20X Tesla part announced earlier today, the GPU-maker is claiming a 7X performance advantage over to a Sandy Bridge Xeon. Although that makes it seem like the GPU competition is three times faster than Knights Corner, the NVIDIA comparison is GPU-to-CPU, while Intel prefers to match its coprocessor against two Xeons.

Nevertheless, NVIDIA’s K20 does top Knights Corner in both raw performance and performance per watt. The 235 watt K20X offers 1.31 double precision teraflops, while the 225 watt 5110P, at 1.011 teraflops, delivers 300 gigaflops less. Advantage NVIDIA.

It appears to be even more skewed for single precision FLOPS, where the K20X offers three times its double precision performance; for the Knights Corner, single precision appears to be just twice that of its double precision results.

On the other hand, the 5110P is top in memory capacity and bandwidth. At 8 GB and 320 GB/sec, respectively, this Knights Corner part outruns the K20X’s 6 GB and 250 GB/sec by a wide margin. For codes that are more data-bound than compute-bound, that could be a decided advantage.

But Intel believes its biggest hammer against GPUs is its programming environment. It allows developers to use the same Intel parallel compilers, libraries and tools they are using for their Xeon codes. Third-party development tools from CAPS enterprise, PGI, Rogue Wave, Allinea, NAG, and others also now include Xeon Phi support.

Intel also likes to point out that GPUs are best at speeding up data parallel apps, and a number of HPC applications do not map very well to that model. “An awful lot of scientific programs really don’t tolerate some of the limitations of explicit data parallelism,” Curley told HPCwire. “Codes can branch; codes can have a great deal of recursion in them; codes can be self-modifying; codes can use sparse irregular data sets. All of which can become vexing for explicitly data parallel architectures, and all of which run on the Intel Xeon Phi.”

That’s not to say it will be a snap to create high-performing Xeon Phi codes. You may be able get applications up and running in a matter of days via some simple code tweaks and a recompilation, but Xeon Phi represents a true throughput accelerator design, and trying to treat it as a manycore CPU, as Intel has sometimes implied, will probably not lead to accelerated applications.

The proof will be in the application pudding. At this point, NVIDIA and the CUDA faithful have a six-year head start in porting codes to HPC accelerators. Intel, though, is a force to be reckoned with, so if the chipmaker can garner enough enthusiasm on the software side, it could make up for lost time rather quickly.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This